17,527 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    MIRAI Architecture for Heterogeneous Network

    Get PDF
    One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless integration of various wireless access systems for practical use by 2005. This article describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multiservice user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless-supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-of-concept experimental demonstration system is available

    A Novel Airborne Self-organising Architecture for 5G+ Networks

    Full text link
    Network Flying Platforms (NFPs) such as unmanned aerial vehicles, unmanned balloons or drones flying at low/medium/high altitude can be employed to enhance network coverage and capacity by deploying a swarm of flying platforms that implement novel radio resource management techniques. In this paper, we propose a novel layered architecture where NFPs, of various types and flying at low/medium/high layers in a swarm of flying platforms, are considered as an integrated part of the future cellular networks to inject additional capacity and expand the coverage for exceptional scenarios (sports events, concerts, etc.) and hard-to-reach areas (rural or sparsely populated areas). Successful roll-out of the proposed architecture depends on several factors including, but are not limited to: network optimisation for NFP placement and association, safety operations of NFP for network/equipment security, and reliability for NFP transport and control/signaling mechanisms. In this work, we formulate the optimum placement of NFP at a Lower Layer (LL) by exploiting the airborne Self-organising Network (SON) features. Our initial simulations show the NFP-LL can serve more User Equipment (UE)s using this placement technique.Comment: 5 pages, 2 figures, conference paper in IEEE VTC-Fall 2017, in Proceedings IEEE Vehicular Technology Conference (VTC-Fall 2017), Toronto, Canada, Sep. 201
    • 

    corecore