105 research outputs found

    A Survey on Modulation Techniques in Molecular Communication via Diffusion

    Get PDF
    This survey paper focuses on modulation aspects of molecular communication, an emerging field focused on building biologically-inspired systems that embed data within chemical signals. The primary challenges in designing these systems are how to encode and modulate information onto chemical signals, and how to design a receiver that can detect and decode the information from the corrupted chemical signal observed at the destination. In this paper, we focus on modulation design for molecular communication via diffusion systems. In these systems, chemical signals are transported using diffusion, possibly assisted by flow, from the transmitter to the receiver. This tutorial presents recent advancements in modulation and demodulation schemes for molecular communication via diffusion. We compare five different modulation types: concentration-based, type-based, timing-based, spatial, and higher-order modulation techniques. The end-to-end system designs for each modulation scheme are presented. In addition, the key metrics used in the literature to evaluate the performance of these techniques are also presented. Finally, we provide a numerical bit error rate comparison of prominent modulation techniques using analytical models. We close the tutorial with a discussion of key open issues and future research directions for design of molecular communication via diffusion systems.Comment: Preprint of the accepted manuscript for publication in IEEE Surveys and Tutorial

    A survey of molecular communication in cell biology : establishing a new hierarchy for interdisciplinary applications

    Get PDF
    Molecular communication (MC) engineering is inspired by the use of chemical signals as information carriers in cell biology. The biological nature of chemical signaling makes MC a promising methodology for interdisciplinary applications requiring communication between cells and other microscale devices. However, since the life sciences and communications engineering fields have distinct approaches to formulating and solving research problems, the mismatch between them can hinder the translation of research results and impede the development and implementation of interdisciplinary solutions. To bridge this gap, this survey proposes a novel communication hierarchy for MC signaling in cell biology and maps phenomena, contributions, and problems to the hierarchy. The hierarchy includes: 1) the physical propagation of cell signaling at the Physical Signal Propagation level; 2) the generation, reception, and biochemical pathways of molecular signals at the Physical and Chemical Signal Interaction level; 3) the quantification of physical signals, including macroscale observation and control methods, and conversion of signals to information at the Signal-Data Interface level; 4) the interpretation of information in cell signals and the realization of synthetic systems to store, process, and communicate molecular signals at the Local Data Abstraction level; and 5) applications relying on communication with MC signals at the Application level. To further demonstrate the proposed hierarchy, it is applied to case studies on quorum sensing, neuronal signaling, and communication via DNA. Finally, several open problems are identified for each level and the integration of multiple levels. The proposed hierarchy provides language for communication engineers to study and interface with biological systems, and also helps biologists to understand how communications engineering concepts can be exploited to interpret, control, and manipulate signaling in cell biology
    • …
    corecore