3,165 research outputs found

    Human Swarm Interaction: An Experimental Study of Two Types of Interaction with Foraging Swarms

    Get PDF
    In this paper we present the first study of human-swarm interaction comparing two fundamental types of interaction, coined intermittent and environmental. These types are exemplified by two control methods, selection and beacon control, made available to a human operator to control a foraging swarm of robots. Selection and beacon control differ with respect to their temporal and spatial influence on the swarm and enable an operator to generate different strategies from the basic behaviors of the swarm. Selection control requires an active selection of groups of robots while beacon control exerts an influence on nearby robots within a set range. Both control methods are implemented in a testbed in which operators solve an information foraging problem by utilizing a set of swarm behaviors. The robotic swarm has only local communication and sensing capabilities. The number of robots in the swarm range from 50 to 200. Operator performance for each control method is compared in a series of missions in different environments with no obstacles up to cluttered and structured obstacles. In addition, performance is compared to simple and advanced autonomous swarms. Thirty-two participants were recruited for participation in the study. Autonomous swarm algorithms were tested in repeated simulations. Our results showed that selection control scales better to larger swarms and generally outperforms beacon control. Operators utilized different swarm behaviors with different frequency across control methods, suggesting an adaptation to different strategies induced by choice of control method. Simple autonomous swarms outperformed human operators in open environments, but operators adapted better to complex environments with obstacles. Human controlled swarms fell short of task-specific benchmarks under all conditions. Our results reinforce the importance of understanding and choosing appropriate types of human-swarm interaction when designing swarm systems, in addition to choosing appropriate swarm behaviors

    An approach for Fault Tolerant and Performance Guarantee Autonomous Robotic Mission

    Get PDF
    International audienceLong duration autonomous missions are still challenging objectives for robotics. This paper presents a new methodology using performance points of view to guide hardware and software resources management according to mission execution and fault occurrence. Experimental results on a patrolling mission are presented. It also detail how localization guarantee is managed and what impact it has on the overall methodology and its performances

    Designing Behavior Trees from Goal-Oriented LTLf Formulas

    Full text link
    Temporal logic can be used to formally specify autonomous agent goals, but synthesizing planners that guarantee goal satisfaction can be computationally prohibitive. This paper shows how to turn goals specified using a subset of finite trace Linear Temporal Logic (LTL) into a behavior tree (BT) that guarantees that successful traces satisfy the LTL goal. Useful LTL formulas for achievement goals can be derived using achievement-oriented task mission grammars, leading to missions made up of tasks combined using LTL operators. Constructing BTs from LTL formulas leads to a relaxed behavior synthesis problem in which a wide range of planners can implement the action nodes in the BT. Importantly, any successful trace induced by the planners satisfies the corresponding LTL formula. The usefulness of the approach is demonstrated in two ways: a) exploring the alignment between two planners and LTL goals, and b) solving a sequential key-door problem for a Fetch robot.Comment: Accepted as "Most Visionary Paper" in Autonomous Robots and Multirobot Systems (ARMS) 2023 workshop affiliated with the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023
    corecore