6,695 research outputs found

    Learning styles based adaptive intelligent tutoring systems: Document analysis of articles published between 2001. and 2016.

    Full text link

    A Review of Data Mining in Personalized Education: Current Trends and Future Prospects

    Full text link
    Personalized education, tailored to individual student needs, leverages educational technology and artificial intelligence (AI) in the digital age to enhance learning effectiveness. The integration of AI in educational platforms provides insights into academic performance, learning preferences, and behaviors, optimizing the personal learning process. Driven by data mining techniques, it not only benefits students but also provides educators and institutions with tools to craft customized learning experiences. To offer a comprehensive review of recent advancements in personalized educational data mining, this paper focuses on four primary scenarios: educational recommendation, cognitive diagnosis, knowledge tracing, and learning analysis. This paper presents a structured taxonomy for each area, compiles commonly used datasets, and identifies future research directions, emphasizing the role of data mining in enhancing personalized education and paving the way for future exploration and innovation.Comment: 25 pages, 5 figure

    A Survey of Artificial Intelligence Techniques Employed for Adaptive Educational Systems within E-Learning Platforms

    Get PDF
    Abstract The adaptive educational systems within e-learning platforms are built in response to the fact that the learning process is different for each and every learner. In order to provide adaptive e-learning services and study materials that are tailor-made for adaptive learning, this type of educational approach seeks to combine the ability to comprehend and detect a person’s specific needs in the context of learning with the expertise required to use appropriate learning pedagogy and enhance the learning process. Thus, it is critical to create accurate student profiles and models based upon analysis of their affective states, knowledge level, and their individual personality traits and skills. The acquired data can then be efficiently used and exploited to develop an adaptive learning environment. Once acquired, these learner models can be used in two ways. The first is to inform the pedagogy proposed by the experts and designers of the adaptive educational system. The second is to give the system dynamic self-learning capabilities from the behaviors exhibited by the teachers and students to create the appropriate pedagogy and automatically adjust the e-learning environments to suit the pedagogies. In this respect, artificial intelligence techniques may be useful for several reasons, including their ability to develop and imitate human reasoning and decision-making processes (learning-teaching model) and minimize the sources of uncertainty to achieve an effective learning-teaching context. These learning capabilities ensure both learner and system improvement over the lifelong learning mechanism. In this paper, we present a survey of raised and related topics to the field of artificial intelligence techniques employed for adaptive educational systems within e-learning, their advantages and disadvantages, and a discussion of the importance of using those techniques to achieve more intelligent and adaptive e-learning environments.</jats:p

    Assessing Adaptive Learning Styles in Computer Science Through a Virtual World

    Get PDF
    abstract: Programming is quickly becoming as ubiquitous and essential a skill as general mathematics. However, many elementary and high school students are still not aware of what the computer science field entails. To make matters worse, students who are introduced to computer science are frequently being fed only part of what it is about rather than its entire construction. Consequently, they feel out of their depth when they approach college. Research has discovered that by teaching computer science and programming through a problem-driven approach and focusing on a combination of syntax and computational thinking, students can be prepared when entering higher levels of computer science education. This thesis describes the design, development, and early user testing of a theory-based virtual world for computer science instruction called System Dot. System Dot was designed to visually manifest programming instructions into interactable objects, giving players a way to see coding as tangible entities rather than text on a white screen. In order for System Dot to convey the true nature of computer science, a custom predictive recursive descent parser was embedded in the program to validate any user-generated solutions to pre-defined logical platforming puzzles. Steps were taken to adapt the virtual world to player behavior by creating a system to detect their learning style playing the game. Through a dynamic Bayesian network, System Dot aims to classify a player’s learning style based on the Felder-Sylverman Learning Style Model (FSLSM). Testers played through the first half of System Dot, which was enough to test out the Bayesian network and initial learning style classification. This classification was then compared to the assessment by Felder’s Index of Learning Styles Questionnaire (ILSQ). Lastly, this thesis will also discuss ways to use the results from the user testing to implement a personalized feedback system for the virtual world in the future and what has been learned through the learning style method.Dissertation/ThesisMasters Thesis Computer Science 201
    • …
    corecore