12,684 research outputs found

    An End-to-End Conversational Style Matching Agent

    Full text link
    We present an end-to-end voice-based conversational agent that is able to engage in naturalistic multi-turn dialogue and align with the interlocutor's conversational style. The system uses a series of deep neural network components for speech recognition, dialogue generation, prosodic analysis and speech synthesis to generate language and prosodic expression with qualities that match those of the user. We conducted a user study (N=30) in which participants talked with the agent for 15 to 20 minutes, resulting in over 8 hours of natural interaction data. Users with high consideration conversational styles reported the agent to be more trustworthy when it matched their conversational style. Whereas, users with high involvement conversational styles were indifferent. Finally, we provide design guidelines for multi-turn dialogue interactions using conversational style adaptation

    How the agentโ€™s gender influence usersโ€™ evaluation of a QA system

    Get PDF
    In this paper we present the results of a pilot study investigating the effects of agentsโ€™ gender-ambiguous vs. gender-marked look on the perceived interaction quality of a multimodal question answering system. Eight test subjects interacted with three system agents, each having a feminine, masculine or gender-ambiguous look. The subjects were told each agent was representing a differently configured system. In fact, they were interacting with the same system. In the end, the subjects filled in an evaluation questionnaire and participated in an in-depth qualitative interview. The results showed that the user evaluation seemed to be influenced by the agentโ€™s gender look: the system represented by the feminine agent achieved on average the highest evaluation scores. On the other hand, the system represented by the gender-ambiguous agent was systematically lower rated. This outcome might be relevant for an appropriate agent look, especially since many designers tend to develop gender-ambiguous characters for interactive interfaces to match various usersโ€™ preferences. However, additional empirical evidence is needed in the future to confirm our findings

    Design Knowledge for Virtual Learning Companions from a Value-centered Perspective

    Get PDF
    The increasing popularity of conversational agents such as ChatGPT has sparked interest in their potential use in educational contexts but undermines the role of companionship in learning with these tools. Our study targets the design of virtual learning companions (VLCs), focusing on bonding relationships for collaborative learning while facilitating studentsโ€™ time management and motivation. We draw upon design science research (DSR) to derive prescriptive design knowledge for VLCs as the core of our contribution. Through three DSR cycles, we conducted interviews with working students and experts, held interdisciplinary workshops with the target group, designed and evaluated two conceptual prototypes, and fully coded a VLC instantiation, which we tested with students in class. Our approach has yielded 9 design principles, 28 meta-requirements, and 33 design features centered around the value-in-interaction. These encompass Human-likeness and Dialogue Management, Proactive and Reactive Behavior, and Relationship Building on the Relationship Layer (DP1,3,4), Adaptation (DP2) on the Matching Layer, as well as Provision of Supportive Content, Fostering Learning Competencies, Motivational Environment, and Ethical Responsibility (DP5-8) on the Service Layer

    ์ธ๊ณต์ง€๋Šฅ๊ณผ ๋Œ€ํ™”ํ•˜๊ธฐ: ์ผ๋Œ€์ผ ๊ทธ๋ฆฌ๊ณ  ๊ทธ๋ฃน ์ƒ์šฉ์ž‘์šฉ์„ ์œ„ํ•œ ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌํšŒ๊ณผํ•™๋Œ€ํ•™ ์–ธ๋ก ์ •๋ณดํ•™๊ณผ, 2022.2. ์ด์ค€ํ™˜."์ธ๊ฐ„-์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ"๊ณผ "์‚ฌ์šฉ์ž ๊ฒฝํ—˜"์„ ๋„˜์–ด, "์ธ๊ฐ„-์ธ๊ณต์ง€๋Šฅ ์ƒํ˜ธ์ž‘์šฉ" ๊ทธ๋ฆฌ๊ณ  "์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฒฝํ—˜"์˜ ์‹œ๋Œ€๊ฐ€ ๋„๋ž˜ํ•˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์€ ์šฐ๋ฆฌ๊ฐ€ ์˜์‚ฌ์†Œํ†ตํ•˜๊ณ  ํ˜‘์—…ํ•˜๋Š” ๋ฐฉ์‹์˜ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ „ํ™˜ํ–ˆ๋‹ค. ๊ธฐ๊ณ„ ์—์ด์ „ํŠธ๋Š” ์ธ๊ฐ„ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์—์„œ ์ ๊ทน์ ์ด๋ฉฐ ์ฃผ๋„์ ์ธ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ํšจ๊ณผ์ ์ธ AI ๊ธฐ๋ฐ˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜๊ณผ ํ† ๋ก  ์‹œ์Šคํ…œ ๋””์ž์ธ์— ๋Œ€ํ•œ ์ดํ•ด์™€ ๋…ผ์˜๋Š” ๋ถ€์กฑํ•œ ๊ฒƒ์ด ์‚ฌ์‹ค์ด๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ฐ„-์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ์˜ ๊ด€์ ์—์„œ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ์ง€์›ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์  ๋ฐฉ๋ฒ•์„ ํƒ์ƒ‰ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋Š” ์ผ๋Œ€์ผ ๊ทธ๋ฆฌ๊ณ  ๊ทธ๋ฃน ์ƒํ˜ธ์ž‘์šฉ์„ ์ง€์›ํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ๋Š” 1) ์ผ๋Œ€์ผ ์ƒํ˜ธ์ž‘์š”์—์„œ ์‚ฌ์šฉ์ž ๊ด€์—ฌ๋ฅผ ๋†’์ด๋Š” ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ, 2) ์ผ์ƒ์ ์ธ ์†Œ์…œ ๊ทธ๋ฃน ํ† ๋ก ์„ ์ง€์›ํ•˜๋Š” ์—์ด์ „ํŠธ, 3) ์ˆ™์˜ ํ† ๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ์—์ด์ „ํŠธ๋ฅผ ๋””์ž์ธ ๋ฐ ๊ฐœ๋ฐœํ•˜๊ณ  ๊ทธ ํšจ๊ณผ๋ฅผ ์ •๋Ÿ‰์  ๊ทธ๋ฆฌ๊ณ  ์ •์„ฑ์ ์œผ๋กœ ๊ฒ€์ฆํ–ˆ๋‹ค. ์‹œ์Šคํ…œ์„ ๋””์ž์ธํ•จ์— ์žˆ์–ด์„œ ์ธ๊ฐ„-์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ๋ฟ ์•„๋‹ˆ๋ผ, ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ํ•™, ์‹ฌ๋ฆฌํ•™, ๊ทธ๋ฆฌ๊ณ  ๋ฐ์ดํ„ฐ ๊ณผํ•™์„ ์ ‘๋ชฉํ•œ ๋‹คํ•™์ œ์  ์ ‘๊ทผ ๋ฐฉ์‹์ด ์ ์šฉ๋˜์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ผ๋Œ€์ผ ์ƒํ˜ธ์ž‘์šฉ ์ƒํ™ฉ์—์„œ ์‚ฌ์šฉ์ž์˜ ๊ด€์—ฌ ์ฆ์ง„์„ ์œ„ํ•œ ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ์˜ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ–ˆ๋‹ค. ์„ค๋ฌธ์กฐ์‚ฌ๋ผ๋Š” ๋งฅ๋ฝ์—์„œ ์ˆ˜ํ–‰๋œ ์ด ์—ฐ๊ตฌ๋Š” ์›น ์„ค๋ฌธ์กฐ์‚ฌ์—์„œ ์‘๋‹ต์ž์˜ ๋ถˆ์„ฑ์‹ค๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ์‘๋‹ต ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ์˜ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ธํ„ฐ๋ž™์…˜ ๋ฐฉ๋ฒ•์œผ๋กœ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํƒ์ƒ‰ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ–ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด 2 (์ธํ„ฐํŽ˜์ด์Šค: ์›น ๅฐ ์ฑ—๋ด‡) X 2 (๋Œ€ํ™” ์Šคํƒ€์ผ: ํฌ๋ฉ€ ๅฐ ์บ์ฅฌ์–ผ) ์‹คํ—˜์„ ์ง„ํ–‰ํ–ˆ์œผ๋ฉฐ, ๋งŒ์กฑํ™” ์ด๋ก ์— ๊ทผ๊ฑฐํ•˜์—ฌ ์‘๋‹ต ๋ฐ์ดํ„ฐ์˜ ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ฑ—๋ด‡ ์„ค๋ฌธ์กฐ์‚ฌ์˜ ์ฐธ์—ฌ์ž๊ฐ€ ์›น ์„ค๋ฌธ์กฐ์‚ฌ์˜ ์ฐธ์—ฌ์ž๋ณด๋‹ค ๋” ๋†’์€ ์ˆ˜์ค€์˜ ๊ด€์—ฌ๋ฅผ ๋ณด์ด๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋” ๋†’์€ ํ’ˆ์งˆ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ์ฑ—๋ด‡์˜ ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ์— ๋Œ€ํ•œ ํšจ๊ณผ๋Š” ์ฑ—๋ด‡์ด ์นœ๊ตฌ ๊ฐ™๊ณ  ์บ์ฅฌ์–ผํ•œ ๋Œ€ํ™”์ฒด๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ๋งŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด ๊ฒฐ๊ณผ๋Š” ๋Œ€ํ™”ํ˜• ์ธํ„ฐ๋ž™ํ‹ฐ๋น„ํ‹ฐ๊ฐ€ ์ธํ„ฐํŽ˜์ด์Šค๋ฟ ์•„๋‹ˆ๋ผ ๋Œ€ํ™” ์Šคํƒ€์ผ์ด๋ผ๋Š” ํšจ๊ณผ์ ์ธ ๋ฉ”์„ธ์ง€ ์ „๋žต์„ ๋™๋ฐ˜ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ผ์ƒ์ ์ธ ์†Œ์…œ ์ฑ„ํŒ… ๊ทธ๋ฃน์—์„œ ์ง‘๋‹จ์˜ ์˜์‚ฌ๊ฒฐ์ •๊ณผ์ •๊ณผ ํ† ๋ก ์„ ์ง€์›ํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด GroupfeedBot์ด๋ผ๋Š” ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ๋ฅผ ์ œ์ž‘ํ•˜์˜€์œผ๋ฉฐ, GroupfeedBot์€ (1) ํ† ๋ก  ์‹œ๊ฐ„์„ ๊ด€๋ฆฌํ•˜๊ณ , (2) ๊ตฌ์„ฑ์›๋“ค์˜ ๊ท ๋“ฑํ•œ ์ฐธ์—ฌ๋ฅผ ์ด‰์ง„ํ•˜๋ฉฐ, (3) ๊ตฌ์„ฑ์›๋“ค์˜ ๋‹ค์–‘ํ•œ ์˜๊ฒฌ์„ ์š”์•ฝ ๋ฐ ์กฐ์งํ™”ํ•˜๋Š” ๊ธฐ๋Šฅ์„ ๊ฐ–๊ณ  ์žˆ๋‹ค. ํ•ด๋‹น ์—์ด์ „ํŠธ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ํƒœ์Šคํฌ (์ถ”๋ก , ์˜์‚ฌ๊ฒฐ์ •, ์ž์œ  ํ† ๋ก , ๋ฌธ์ œ ํ•ด๊ฒฐ ๊ณผ์ œ)์™€ ๊ทธ๋ฃน ๊ทœ๋ชจ(์†Œ๊ทœ๋ชจ, ์ค‘๊ทœ๋ชจ)์— ๊ด€ํ•˜์—ฌ ์‚ฌ์šฉ์ž ์กฐ์‚ฌ๋ฅผ ์‹œํ–‰ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์˜๊ฒฌ์˜ ๋‹ค์–‘์„ฑ ์ธก๋ฉด์—์„œ GroupfeedBot์œผ๋กœ ํ† ๋ก ํ•œ ์ง‘๋‹จ์ด ๊ธฐ๋ณธ ์—์ด์ „ํŠธ์™€ ํ† ๋ก ํ•œ ์ง‘๋‹จ๋ณด๋‹ค ๋” ๋‹ค์–‘ํ•œ ์˜๊ฒฌ์„ ์ƒ์„ฑํ–ˆ์ง€๋งŒ ์‚ฐ์ถœ๋œ ๊ฒฐ๊ณผ์˜ ํ’ˆ์งˆ๊ณผ ๋ฉ”์‹œ์ง€ ์–‘์— ์žˆ์–ด์„œ๋Š” ์ฐจ์ด๊ฐ€ ์—†๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ท ๋“ฑํ•œ ์ฐธ์—ฌ์— ๋Œ€ํ•œ GroupfeedBot์˜ ํšจ๊ณผ๋Š” ํƒœ์Šคํฌ์˜ ํŠน์„ฑ์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋Š”๋ฐ, ํŠนํžˆ ์ž์œ  ํ† ๋ก  ๊ณผ์ œ์—์„œ GroupfeedBot์ด ์ฐธ์—ฌ์ž๋“ค์˜ ๊ท ๋“ฑํ•œ ์ฐธ์—ฌ๋ฅผ ์ด‰์ง„ํ–ˆ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ˆ™์˜ ํ† ๋ก ์„ ์ง€์›ํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœ๋œ DebateBot์€ GroupfeeedBot๊ณผ ๋‹ฌ๋ฆฌ ๋” ์ง„์ง€ํ•œ ์‚ฌํšŒ์  ๋งฅ๋ฝ์—์„œ ์ ์šฉ๋˜์—ˆ๋‹ค. DebateBot์€ (1) ์ƒ๊ฐํ•˜๊ธฐ-์ง์ง“๊ธฐ-๊ณต์œ ํ•˜๊ธฐ (Think-Pair-Share) ์ „๋žต์— ๋”ฐ๋ผ ํ† ๋ก ์„ ๊ตฌ์กฐํ™”ํ•˜๊ณ , (2) ๊ณผ๋ฌตํ•œ ํ† ๋ก ์ž์—๊ฒŒ ์˜๊ฒฌ์„ ์š”์ฒญํ•จ์œผ๋กœ์จ ๋™๋“ฑํ•œ ์ฐธ์—ฌ๋ฅผ ์ด‰์ง„ํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ์‚ฌ์šฉ์ž ํ‰๊ฐ€ ๊ฒฐ๊ณผ DebateBot์€ ๊ทธ๋ฃน ์ƒํ˜ธ์ž‘์šฉ์„ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ์‹ฌ์˜ ํ† ๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ๋‹ค. ํ† ๋ก  ๊ตฌ์กฐํ™”๋Š” ํ† ๋ก ์˜ ์งˆ์— ๊ธ์ •์ ์ธ ํšจ๊ณผ๋ฅผ ๋ฐœํœ˜ํ•˜์˜€๊ณ , ์ฐธ์—ฌ์ž ์ด‰์ง„์€ ์ง„์ •ํ•œ ํ•ฉ์˜ ๋„๋‹ฌ์— ๊ธฐ์—ฌํ•˜์˜€์œผ๋ฉฐ, ๊ทธ๋ฃน ๊ตฌ์„ฑ์›๋“ค์˜ ์ฃผ๊ด€์  ๋งŒ์กฑ๋„๋ฅผ ํ–ฅ์ƒํ–ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด ์„ธ ๊ฐ€์ง€ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ์ธ๊ฐ„-์ธ๊ณต์ง€๋Šฅ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ์‹œ์‚ฌ์ ๋“ค์„ ๋„์ถœํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ TAMED (Task-Agent-Message-Information Exchange-Relationship Dynamics) ๋ชจ๋ธ๋กœ ์ •๋ฆฌํ•˜์˜€๋‹ค.The advancements in technology shift the paradigm of how individuals communicate and collaborate. Machines play an active role in human communication. However, we still lack a generalized understanding of how exactly to design effective machine-driven communication and discussion systems. How should machine agents be designed differently when interacting with a single user as opposed to when interacting with multiple users? How can machine agents be designed to drive user engagement during dyadic interaction? What roles can machine agents perform for the sake of group interaction contexts? How should technology be implemented in support of the group decision-making process and to promote group dynamics? What are the design and technical issues which should be considered for the sake of creating human-centered interactive systems? In this thesis, I present new interactive systems in the form of a conversational agent, or a chatbot, that facilitate dyadic and group interactions. Specifically, I focus on: 1) a conversational agent to engage users in dyadic communication, 2) a chatbot called GroupfeedBot that facilitates daily social group discussion, 3) a chatbot called DebateBot that enables deliberative discussion. My approach to research is multidisciplinary and informed by not only in HCI, but also communication, psychology and data science. In my work, I conduct in-depth qualitative inquiry and quantitative data analysis towards understanding issues that users have with current systems, before developing new computational techniques that meet those user needs. Finally, I design, build, and deploy systems that use these techniques to the public in order to achieve real-world impact and to study their use by different usage contexts. The findings of this thesis are as follows. For a dyadic interaction, participants interacting with a chatbot system were more engaged as compared to those with a static web system. However, the conversational agent leads to better user engagement only when the messages apply a friendly, human-like conversational style. These results imply that the chatbot interface itself is not quite sufficient for the purpose of conveying conversational interactivity. Messages should also be carefully designed to convey such. Unlike dyadic interactions, which focus on message characteristics, other elements of the interaction should be considered when designing agents for group communication. In terms of messages, it is important to synthesize and organize information given that countless messages are exchanged simultaneously. In terms of relationship dynamics, rather than developing a rapport with a single user, it is essential to understand and facilitate the dynamics of the group as a whole. In terms of task performance, technology should support the group's decision-making process by efficiently managing the task execution process. Considering the above characteristics of group interactions, I created the chatbot agents that facilitate group communication in two different contexts and verified their effectiveness. GroupfeedBot was designed and developed with the aim of enhancing group discussion in social chat groups. GroupfeedBot possesses the feature of (1) managing time, (2) encouraging members to participate evenly, and (3) organizing the membersโ€™ diverse opinions. The group which discussed with GroupfeedBot tended to produce more diverse opinions compared to the group discussed with the basic chatbot. Some effects of GroupfeedBot varied by the task's characteristics. GroupfeedBot encouraged the members to contribute evenly to the discussions, especially for the open-debating task. On the other hand, DebateBot was designed and developed to facilitate deliberative discussion. In contrast to GroupfeedBot, DebateBot was applied to more serious and less casual social contexts. Two main features were implemented in DebateBot: (1) structure discussion and (2) request opinions from reticent discussants.This work found that a chatbot agent which structures discussions and promotes even participation can improve discussions, resulting in higher quality deliberative discussion. Overall, adding structure to the discussion positively influenced the discussion quality, and the facilitation helped groups reach a genuine consensus and improved the subjective satisfaction of the group members. The findings of this thesis reflect the importance of understanding human factors in designing AI-infused systems. By understanding the characteristics of individual humans and collective groups, we are able to place humans at the heart of the system and utilize AI technology in a human-friendly way.1. Introduction 1.1 Background 1.2 Rise of Machine Agency 1.3 Theoretical Framework 1.4 Research Goal 1.5 Research Approach 1.6 Summary of Contributions 1.7 Thesis Overview 2. Related Work 2.1 A Brief History of Conversational Agents 2.2 TAMED Framework 3. Designing Conversational Agents for Dyadic Interaction 3.1 Background 3.2 Related Work 3.3 Method 3.4 Results 3.5 Discussion 3.6 Conclusion 4. Designing Conversational Agents for Social Group Discussion 4.1 Background 4.2 Related Work 4.3 Needfinding Survey for Facilitator Chatbot Agent 4.4 GroupfeedBot: A Chatbot Agent For Facilitating Discussion in Group Chats 4.5 Qualitative Study with Small-Sized Group 4.6 User Study With Medium-Sized Group 4.7 Discussion 4.8 Conclusion 5. Designing Conversational Agents for Deliberative Group Discussion 5.1 Background 5.2 Related Work 5.3 DebateBot 5.4 Method 5.5 Results 5.6 Discussion and Design Implications 5.7 Conclusion 6. Discussion 6.1 Designing Conversational Agents as a Communicator 6.2 Design Guidelines Based on TAMED Model 6.3 Technical Considerations 6.4 Human-AI Collaborative System 7. Conclusion 7.1 Research Summary 7.2 Summary of Contributions 7.3 Future Work 7.4 Conclusion๋ฐ•
    • โ€ฆ
    corecore