1,122 research outputs found

    On channel estimation and optimal training design for amplify and forward relay networks

    Get PDF
    10.1109/GLOCOM.2007.763GLOBECOM - IEEE Global Telecommunications Conference4015-401

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Implementation of Distributed Time Exchange Based Cooperative Forwarding

    Full text link
    In this paper, we design and implement time exchange (TE) based cooperative forwarding where nodes use transmission time slots as incentives for relaying. We focus on distributed joint time slot exchange and relay selection in the sum goodput maximization of the overall network. We formulate the design objective as a mixed integer nonlinear programming (MINLP) problem and provide a polynomial time distributed solution of the MINLP. We implement the designed algorithm in the software defined radio enabled USRP nodes of the ORBIT indoor wireless testbed. The ORBIT grid is used as a global control plane for exchange of control information between the USRP nodes. Experimental results suggest that TE can significantly increase the sum goodput of the network. We also demonstrate the performance of a goodput optimization algorithm that is proportionally fair.Comment: Accepted in 2012 Military Communications Conferenc

    Cognitive full-duplex relay networks under the peak interference power constraint of multiple primary users

    Get PDF
    Abstract This paper investigates the outage performance of cognitive spectrum-sharing multi-relay networks in which the relays operate in a full-duplex (FD) mode and employ the decode-and-forward (DF) protocol. Two relay selection schemes, i.e., partial relay selection (PRS) and optimal relay selection (ORS), are considered to enhance the system performance. New exact expressions for the outage probability (OP) in both schemes are derived based on which an asymptotic analysis is carried out. The results show that the ORS strategy outperforms PRS in terms of OP, and increasing the number of FD relays can significantly improve the system performance. Moreover, novel analytical results provide additional insights for system design. In particular, from the viewpoint of FD concept, the primary network parameters (i.e., peak interference at the primary receivers, number of primary receivers, and their locations) should be carefully considered since they significantly affect the secondary network performance
    corecore