13,552 research outputs found

    Fostering energy awareness in residential homes using mobile devices

    Get PDF
    There is considerable global effort being made towards identifying ways of reducing energy consumption to cope with growing demands. Although there is potential for energy saving in many sectors, our focus is on reducing energy consumption in residential homes. We have developed a system which combines home automation and energy usage monitoring technologies. The system offers a range of tools designed for mobile devices to assist users with monitoring their energy usage and provides mechanisms for setting up and controlling home appliances to conserve energy. In this paper we describe our system and a user study we have conducted to evaluate its effectiveness. The findings of the study show the potential benefits of this type of mobile technology

    Green multimedia: informing people of their carbon footprint through two simple sensors

    Get PDF
    In this work we discuss a new, but highly relevant, topic to the multimedia community; systems to inform individuals of their carbon footprint, which could ultimately effect change in community carbon footprint-related activities. The reduction of carbon emissions is now an important policy driver of many governments, and one of the major areas of focus is in reducing the energy demand from the consumers i.e. all of us individually. In terms of CO2 generated from energy consumption, there are three predominant factors, namely electricity usage, thermal related costs, and transport usage. Standard home electricity and heating sensors can be used to measure the former two aspects, and in this paper we evaluate a novel technique to estimate an individual's transport-related carbon emissions through the use of a simple wearable accelerometer. We investigate how providing this novel estimation of transport-related carbon emissions through an interactive web site and mobile phone app engages a set of users in becoming more aware of their carbon emissions. Our evaluations involve a group of 6 users collecting 25 million accelerometer readings and 12.5 million power readings vs. a control group of 16 users collecting 29.7 million power readings

    USEM: A ubiquitous smart energy management system for residential homes

    Get PDF
    With the ever-increasing worldwide demand for energy, and the limited available energy resources, there is a growing need to reduce our energy consumption whenever possible. Therefore, over the past few decades a range of technologies have been proposed to assist consumers with reducing their energy use. Most of these have focused on decreasing energy consumption in the industry, transport, and services sectors. In more recent years, however, growing attention has been given to energy use in the residential sector, which accounts for nearly 30% of total energy consumption in the developed countries. Here we present one such system, which aims to assist residential users with monitoring their energy usage and provides mechanisms for setting up and controlling their home appliances to conserve energy. We also describe a user study we have conducted to evaluate the effectiveness of this system in supporting its users with a range of tools and visualizations developed for ubiquitous devices such as mobile phones and tablets. The findings of this study have shown the potential benefits of our system, and have identified areas of improvement that need to be addressed in the future

    Home Energy Consumption Feedback: A User Survey

    Get PDF
    Buildings account for a relevant fraction of the energy consumed by a country, up to 20-40% of the yearly energy consumption. If only electricity is considered, the fraction is even bigger, reaching around 73% of the total electricity consumption, equally divided into residential and commercial dwellings. Building and Home Automation have a potential to profoundly impact current and future buildings' energy efficiency by informing users about their current consumption patterns, by suggesting more efficient behaviors, and by pro-actively changing/modifying user actions for reducing the associated energy wastes. In this paper we investigate the capability of an automated home to automatically, and timely, inform users about energy consumption, by harvesting opinions of residential inhabitants on energy feedback interfaces. We report here the results of an on-line survey, involving nearly a thousand participants, about feedback mechanisms suggested by the research community, with the goal of understanding what feedback is felt by home inhabitants easier to understand, more likely to be used, and more effective in promoting behavior changes. Contextually, we also collect and distill users' attitude towards in-home energy displays and their preferred locations, gathering useful insights on user-driven design of more effective in-home energy display

    Does disaggregated electricity feedback reduce domestic electricity consumption? A systematic review of the literature

    Full text link
    We examine 12 studies on the efficacy of disaggregated energy feedback. The average electricity reduction across these studies is 4.5%. However, 4.5% may be a positively-biased estimate of the savings achievable across the entire population because all 12 studies are likely to be prone to opt-in bias hence none test the effect of disaggregated feedback on the general population. Disaggregation may not be required to achieve these savings: Aggregate feedback alone drives 3% reductions; and the 4 studies which directly compared aggregate feedback against disaggregated feedback found that aggregate feedback is at least as effective as disaggregated feedback, possibly because web apps are viewed less often than in-home-displays (in the short-term, at least) and because some users do not trust fine-grained disaggregation (although this may be an issue with the specific user interface studied). Disaggregated electricity feedback may help a motivated sub-group of the population to save more energy but fine-grained disaggregation may not be necessary to achieve these energy savings. Disaggregation has many uses beyond those discussed in this paper but, on the specific question of promoting energy reduction in the general population, there is no robust evidence that current forms of disaggregated energy feedback are more effective than aggregate energy feedback. The effectiveness of disaggregated feedback may increase if the general population become more energy-conscious (e.g. if energy prices rise or concern about climate change deepens); or if users' trust in fine-grained disaggregation improves; or if innovative new approaches or alternative disaggregation strategies (e.g. disaggregating by behaviour rather than by appliance) out-perform existing feedback. We also discuss opportunities for new research into the effectiveness of disaggregated feedback.Comment: Accepted for oral presentation at the 3rd International NILM Workshop, Vancouver, 14-15 May 201

    FSEA 2014 – Proceedings of the AVI 2014 Workshop on Fostering Smart Energy Applications through Advanced Visual Interfaces

    Get PDF
    It is with great pleasure that we welcome you to FSEA 2014, the AVI 2014 workshop on Fostering Smart Energy Applications through Advanced Visual Interfaces. This workshop focuses on advanced interaction, interface, and visualization techniques for energy-related applications, tools, and services. It brings together researchers and practitioners from a diverse range of background, including interaction design, human-computer interaction, visualization, computer games, and other fields concerned with the development of advanced visual interfaces for smart energy applications. FSEA 2014 is the result of the efforts of many people involved in its organization, including our programme committee, and others who have assisted us in putting this workshop together

    Assessing the number of users who are excluded by domestic heating controls

    Get PDF
    This is the pre-print version of the Article. This Article is also referred to as: "Assessing the 'Design Exclusion' of Heating Controls at a Low-Cost, Low-Carbon Housing Development". - Copyright @ 2011 Taylor & FrancisSpace heating accounts for almost 60% of the energy delivered to housing which in turn accounts for nearly 27% of the total UK's carbon emissions. This study was conducted to investigate the influence of heating control design on the degree of ‘user exclusion’. This was calculated using the Design Exclusion Calculator, developed by the Engineering Design Centre at the University of Cambridge. To elucidate the capability requirements of the system, a detailed hierarchical task analysis was produced, due to the complexity of the overall task. The Exclusion Calculation found that the current design placed excessive demands upon the capabilities of at least 9.5% of the UK population over 16 years old, particularly in terms of ‘vision’, ‘thinking’ and ‘dexterity’ requirements. This increased to 20.7% for users over 60 years old. The method does not account for the level of numeracy and literacy and so the true exclusion may be higher. Usability testing was conducted to help validate the results which indicated that 66% of users at a low-carbon housing development could not programme their controls as desired. Therefore, more detailed analysis of the cognitive demands placed upon the users is required to understand where problems within the programming process occur. Further research focusing on this cognitive interaction will work towards a solution that may allow users to behave easily in a more sustainable manner

    EnCOMPASS - An integrative approach to behavioural change for energy saving

    Get PDF
    This paper presents the research objectives of the enCOMPASS project, which aims at implementing and validating an integrated socio-technical approach to behavioural change for energy saving. To this end, innovative user-friendly digital tools will be developed to 1) make energy data consumption available and understandable for different types of users and stakeholders (household residents, office employees, school pupils, building managers, utilities, ICT providers) and to 2) empower them to collaborate in order to achieve energy savings and manage their energy needs in efficient, cost-effective and comfort-preserving ways. The project will demonstrate how this can be achieved with a novel approach that integrates user-centered visualisation of energy data from smart sensors and user-generated information with context-aware collaborative recommendations for energy saving, intelligent control and adaptive gamified incentives enabling effective and sustained behavioural change
    corecore