2 research outputs found

    Logic Programming approaches for routing fault-free and maximally-parallel Wavelength Routed Optical Networks on Chip (Application paper)

    Get PDF
    One promising trend in digital system integration consists of boosting on-chip communication performance by means of silicon photonics, thus materializing the so-called Optical Networks-on-Chip (ONoCs). Among them, wavelength routing can be used to route a signal to destination by univocally associating a routing path to the wavelength of the optical carrier. Such wavelengths should be chosen so to minimize interferences among optical channels and to avoid routing faults. As a result, physical parameter selection of such networks requires the solution of complex constrained optimization problems. In previous work, published in the proceedings of the International Conference on Computer-Aided Design, we proposed and solved the problem of computing the maximum parallelism obtainable in the communication between any two endpoints while avoiding misrouting of optical signals. The underlying technology, only quickly mentioned in that paper, is Answer Set Programming (ASP). In this work, we detail the ASP approach we used to solve such problem. Another important design issue is to select the wavelengths of optical carriers such that they are spread across the available spectrum, in order to reduce the likelihood that, due to imperfections in the manufacturing process, unintended routing faults arise. We show how to address such problem in Constraint Logic Programming on Finite Domains (CLP(FD)). This paper is under consideration for possible publication on Theory and Practice of Logic Programming.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017. 16 pages, LaTeX, 5 figure

    Design technology for fault-free and maximally-parallel wavelength-routed optical networks-on-chip

    No full text
    The recent interest in emerging interconnect technologies is bringing the issue of a proper EDA support for them to the forefront, so to tackle the design complexity. A relevant case study is provided by wavelength-routed optical NoCs (WRONoCs), which add communication performance guarantees to the typical latency, throughput and power benefits of an optical link, thus providing an appealing technology for the photonic integration of high-end embedded systems. Typically, only abstract WRONoC models are considered to figure out architecture-level performance, and logic connectivity patterns for the quantification of the required signal strength (i.e., static power). However, this design practice overlooks the needed refinement step, where key physical parameters are assigned such as wavelengths of the optical channels, and size of the optical filters. This step is unfortunately not decoupled from the architectural evaluation, since its main constraint (i.e., avoiding routing faults) turns out to be a key limiter for both the network scale and the achievable communication parallelism. By proposing a formal methodology to select WRONoC parameters while avoding the routing fault concern, this paper aims at maximizing the levels of connectivity and/or of bit parallelism that WRONoCs can achieve, while relating their upper bounds to the uncertainty of the manufacturing process
    corecore