1 research outputs found

    Analysis and Design of MHz DC-DC Resonant Power Conversion System Using Series Inverters and Active Rectifier

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 전기·정보곡학뢀, 2022.2. ν•˜μ •μ΅.κ³΅μ§„ν˜• μ „λ ₯ λ³€ν™˜ νšŒλ‘œλŠ” μ „λ ₯ λ³€ν™˜ 회둜 λ‚΄μ—μ„œ 면적, λΆ€ν”Ό 및 λ¬΄κ²Œμ— 큰 비쀑을 μ°¨μ§€ν•˜λŠ” μžμ„± μ†Œμžλ₯Ό κ°μ†Œμ‹œν‚¬ 수 μžˆλ‹€. 특히 MHz μ΄μƒμ˜ 고주파둜 λ™μž‘ν•˜λŠ” κ³΅μ§„ν˜• μ „λ ₯ λ³€ν™˜ νšŒλ‘œλŠ” μžμ„± μ†Œμžλ₯Ό 곡심 μΈλ•ν„°λ‘œ λŒ€μ²΄ ν•  수 있고, μ΄λŠ” κ³΅μ§„ν˜• μ „λ ₯ λ³€ν™˜ 회둜 λ‚΄μ—μ„œ 큰 손싀을 μ°¨μ§€ν•˜λŠ” μžμ„± μ†Œμžμ˜ μ½”μ–΄ 손싀을 제거 ν•  수 μžˆλ‹€. λ”°λΌμ„œ 고집적, κ³ νš¨μœ¨μ„ μš”κ΅¬ν•˜λŠ” 무선 μ „λ ₯ 전솑, μ†ŒλΉ„μž κ°€μ „, λͺ¨λ°”일 κΈ°κΈ° λ“±μ˜ μ‘μš© 뢄야뿐 μ•„λ‹ˆλΌ 데이터 μ„Όν„°, μ „κΈ° μžλ™μ°¨ λ“±μ˜ μ‘μš© 뢄야에 λŒ€ν•΄μ„œλ„ κ³΅μ§„ν˜• μ „λ ₯ λ³€ν™˜ 회둜λ₯Ό μ μš©ν•˜λ €λŠ” λ§Žμ€ 연ꡬ가 이루어 지고 μžˆλ‹€. MHz μ΄μƒμ˜ κ³΅μ§„ν˜• μ „λ ₯ λ³€ν™˜ 회둜의 λ™μž‘μ„ μœ„ν•΄μ„œ ν•„μˆ˜λ‘œ μ‚¬μš©λ˜λŠ” WBG μ „λ ₯ μŠ€μœ„μΉ˜λŠ” μ „λ ₯ λ³€ν™˜ 회둜의 νŠΉμ„±μ— 큰 영ν–₯을 λΌμΉœλ‹€. 특히 WBG μ†Œμžμ˜ 정격 νŠΉμ„± μ œν•œκ³Ό WBG μ†Œμžμ˜ λ™μž‘ 쑰건에 λ”°λ₯Έ νŠΉμ„± 변동에 λŒ€ν•œ μ „λ ₯ λ³€ν™˜ 회둜의 μ˜μ‘΄μ„±μ€ μ „λ ₯ λ³€ν™˜ 회둜의 νŠΉμ„±μ„ μ €ν•˜μ‹œν‚€κ³ , λ™μž‘ λ²”μœ„λ₯Ό μ œν•œν•˜λ©°, μ‹œμŠ€ν…œ μƒμ—μ„œ μΆ”κ°€ νšŒλ‘œκ°€ μš”κ΅¬λ˜μ–΄ μ‘μš© λΆ„μ•Όκ°€ μ œν•œ λ˜λŠ” λ“± 유/λ¬΄ν˜•μ˜ λΉ„μš© 증가λ₯Ό μ•ΌκΈ°ν•œλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” WBG μ†Œμžμ˜ νŠΉμ„±μ— λ”°λ₯Έ κ³΅μ§„ν˜• DC-DC μ „λ ₯ λ³€ν™˜ 회둜의 μ˜μ‘΄μ„±μ„ κ·Ήλ³΅ν•˜κ³  μ „λ ₯ ν™•μž₯성을 보μž₯ν•˜λŠ” 직렬 κ³΅μ§„ν˜• 인버터 ꡬ쑰와 λŠ₯동 κ³΅μ§„ν˜• μ •λ₯˜κΈ°λ₯Ό μ΄μš©ν•œ κ³΅μ§„ν˜• DC-DC μ „λ ₯ λ³€ν™˜ 회둜λ₯Ό μ œμ•ˆν•œλ‹€. 첫째둜 WBG μ†Œμžμ˜ μ „μ•• 정격 νŠΉμ„±μ— λŒ€ν•œ μ˜μ‘΄μ„±μ„ κ·Ήλ³΅ν•˜κΈ° μœ„ν•˜μ—¬ 직렬 κ³΅μ§„ν˜• 인버터 ꡬ쑰λ₯Ό μ œμ•ˆν•œλ‹€. 직렬 인버터λ₯Ό κ΅¬μ„±ν•˜λŠ” 각 μΈλ²„ν„°μ˜ λΉ„λŒ€μΉ­μ„±κ³Ό μ‹ ν˜Έ μ§€μ—°μ˜ 였차λ₯Ό κ³ λ €ν•œ λͺ¨λΈλ§μ„ ν†΅ν•œ 뢄석적인 μ ‘κ·ΌμœΌλ‘œ μ „λ ₯ λ³€ν™˜ 회둜의 μˆœν™˜ μ „λ₯˜ νŠΉμ„±μ„ μ΅œμ†Œν™”ν•œλ‹€. λ˜ν•œ 뢄석을 λ°”νƒ•μœΌλ‘œ 주어진 섀계 μš”κ±΄μ— λŒ€ν•œ 졜적 섀계λ₯Ό λ„μΆœ ν•  수 μžˆλŠ” 섀계 방법둠을 μ œκ³΅ν•œλ‹€. λ‹¨μœ„ μΈλ²„ν„°μ˜ 졜적 섀계λ₯Ό ν†΅ν•˜μ—¬ μ„±λŠ₯을 ν™•λ³΄ν•˜κ³  λͺ¨λ“ˆν™”λ₯Ό κ΅¬μ„±ν•˜μ—¬ ν™•μž₯성을 도λͺ¨ν•˜λ©°, 이λ₯Ό 톡해 μž…λ ₯ μ „μ••μ˜ 증가에 λŒ€ν•΄μ„œ κΈ°μ‘΄ WBG μ†Œμžμ˜ μ „μ•• μ •κ²©μ˜ μ œν•œμ„ κ·Ήλ³΅ν•˜κ³  μ „λ ₯ λ³€ν™˜ 회둜의 μž…λ ₯ λ™μž‘ λ²”μœ„λ₯Ό ν™•μž₯ ν•œλ‹€. λ‘˜μ§Έλ‘œ WBG μ†Œμžμ˜ νŠΉμ„± 변동에 λŒ€ν•œ μ˜μ‘΄μ„±μ„ κ·Ήλ³΅ν•˜κΈ° μœ„ν•˜μ—¬ λŠ₯동 κ³΅μ§„ν˜• μ •λ₯˜κΈ° λ™μž‘μ„ μ œμ•ˆν•œλ‹€. μ œμ•ˆν•˜λŠ” λŠ₯동 κ³΅μ§„ν˜• μ •λ₯˜κΈ°λŠ” μŠ€μœ„μΉ˜μ˜ λ™μž‘ λͺ¨λ“œλ₯Ό μΆ”κ°€ν•˜μ—¬ μΆ”κ°€ 회둜 없이 μ •λ₯˜κΈ°μ˜ νŠΉμ„±μ„ κ°€λ³€ ν•œλ‹€. 특히 μ •λ₯˜κΈ°μ˜ μž…λ ₯ μž„ν”Όλ˜μŠ€ νŠΉμ„±μ„ μ €ν•­μ„±μœΌλ‘œ μœ μ§€ν•˜κΈ° μœ„ν•˜μ—¬, μ •λ₯˜κΈ° 동기 μŠ€μœ„μΉ˜μ˜ λ“€ν‹° 비에 λ”°λ₯Έ νŠΉμ„±μ„ λΆ„μ„ν•˜κ³  μ •κ·œν™”ν•˜μ—¬ 주어진 λ™μž‘ μš”κ±΄κ³Ό λ¬΄κ΄€ν•˜κ²Œ 졜적의 νŠΉμ„±μ„ λ„μΆœν•œλ‹€. λ”°λΌμ„œ 효과적으둜 유효 전달 μ „λ ₯을 전달 ν•  수 있으며 κ³΅μ§„ν˜• μ „λ ₯ λ³€ν™˜ 회둜의 좜λ ₯ λ™μž‘ λ²”μœ„λ₯Ό ν™•μž₯ ν•œλ‹€. μ œμ•ˆν•˜λŠ” ꡬ쑰 및 λ™μž‘μ€ 2단, 3단 직렬 κ³΅μ§„ν˜• Class EF2 인버터 ꡬ성과 반파 μ •λ₯˜κΈ°, κ³΅μ§„ν˜• Class E μ •λ₯˜κΈ° λ“±μ˜ μ—¬λŸ¬κ°€μ§€ μ „λ ₯ λ³€ν™˜ 회둜의 쑰합에 λŒ€ν•΄μ„œ λͺ¨μ˜ μ‹€ν—˜κ³Ό μ‹€ν—˜ κ²°κ³Όλ₯Ό μˆ˜ν–‰ν•˜κ³ , μ œμ•ˆν•˜λŠ” λ°©λ²•μ˜ νš¨μš©μ„±κ³Ό μš°μˆ˜μ„±μ„ κ²€μ¦ν•˜μ˜€λ‹€.A resonant power conversion system can reduce the magnetic elements that occupy a large specific weight in the area, volume, and weight in the power conversion circuit. In particular, a resonant power conversion circuit that operates at a high frequency of MHz or higher can replace the magnetic element with an air-cored inductor, which can eliminate the core loss of the magnetic element that occupies a large loss in the resonant power conversion circuit. Therefore, a resonant power conversion circuit is applied such as wireless power transfer, consumer appliances, mobile devices, data centers, and electric vehicles. The WBG devices, which is essential for the operation of MHz resonant power conversion circuit, has a great influence on the characteristics of the power conversion circuit. In particular, the dependence of the power conversion circuit on the rated characteristic limitation of the WBG devices and the characteristic difference due to the operating conditions lowers the characteristics of the power conversion circuit, limits the operating range, and requires an additional circuit on the system. , causes cost increase such as limited application fields. In this paper, the MHz resonant DC-DC power conversion circuit using the series resonant Class EF2 inverter topology and the active resonant Class E rectifier that overcomes the dependence of the resonant power conversion circuit according to the characteristics of the WBG devices. First, in order to overcome the dependence on the voltage rating characteristics of the WBG devices, a series resonant Class EF2 inverter topology is proposed. The circulating current characteristics of the power conversion circuit are minimized by an analytical approach based on modeling that takes into account the asymmetry and gate-signal propagation delay. It also provides a design methodology that can derive the optimal design for a given design requirement based on the analysis. Performance is ensured through the optimum design of the unit inverter, modularization is configured for modularity, which overcomes the voltage rating limitation of previous WBG device against an increase in input voltage, and the input operating range of the power conversion circuit. Secondly, in order to overcome the dependence on the characteristic differences of the WBG devices, an active resonant Class E rectification is proposed. The proposed active resonant rectifier utilizes an additional mode of the synchronous switch. In particular, in order to keep the input impedance characteristics of the rectifier, the characteristics according to the duty ratio of the rectifier synchronization switch are analyzed and normalized to derive the optimum characteristics regardless of the given operating requirements. Therefore, the active power can be effectively transferred, and the operating range of the resonant power conversion circuit is extended. The proposed topology and analysis is verified with the prototype board including two-stage or three-stage series resonant Class EF2 inverters, half wave rectifier, and Class E rectifier. Therefore, the effectiveness and the strength of the proposed topology and analysis are verified.제 1 μž₯ μ„œ λ‘  1 1.1 연ꡬ λ°°κ²½ 1 1.2 연ꡬ λͺ©μ  13 1.3 λ…Όλ¬Έμ˜ ꡬ성 15 제 2 μž₯ μ‹±κΈ€ μ—”λ””λ“œ κ³΅μ§„ν˜• 회둜 17 2.1 Class E μ „λ ₯ λ³€ν™˜ 회둜 17 2.1.1 Class E μ „λ ₯ λ³€ν™˜ 회둜의 κΈ°λ³Έ λ™μž‘ 18 2.1.2 λΆ€ν•˜ 쑰건에 λŒ€ν•œ μ˜μ‘΄μ„± 20 2.1.3 Class E κ³΅μ§„ν˜• μ •λ₯˜κΈ° 21 2.1.4 μŠ€μœ„μΉ˜ 좜λ ₯ μ»€νŒ¨μ‹œν„° 변동에 λ”°λ₯Έ νŠΉμ„± 변동 22 2.2 Class F μ „λ ₯ λ³€ν™˜ 회둜 25 2.3 Class EF/ μ „λ ₯ λ³€ν™˜ 회둜 29 2.3.1 Class EF2 μ „λ ₯ λ³€ν™˜ 회둜의 고쑰파 νŠΉμ„± 31 2.3.2 Class EF2 μ „λ ₯ λ³€ν™˜ 회둜의 λΆ€ν•˜ 쑰건 변동에 λŒ€ν•œ νŠΉμ„± 34 제 3 μž₯ 직렬 κ³΅μ§„ν˜• 인버터λ₯Ό μ΄μš©ν•œ κ³΅μ§„ν˜• DC-DC μ „λ ₯ λ³€ν™˜ 회둜 36 3.1 높은 μž…λ ₯ 전압을 μœ„ν•œ κ³΅μ§„ν˜• μ „λ ₯ λ³€ν™˜ 회둜 36 3.2 직렬 κ³΅μ§„ν˜• 인버터 ꡬ쑰의 μ œμ•ˆ 41 3.3 μ†Œμž λΉ„λŒ€μΉ­μ„±μ— λŒ€ν•œ 영ν–₯ 44 3.3.1 직렬 인버터 ꡬ쑰의 μ†Œμž λΉ„λŒ€μΉ­ 및 영ν–₯ 46 3.4 직렬 κ³΅μ§„ν˜• 인버터 ꡬ쑰의 λͺ¨λΈλ§ 51 제 4 μž₯ κ³΅μ§„ν˜• λŠ₯동 μ •λ₯˜κΈ°λ₯Ό μ΄μš©ν•œ κ³΅μ§„ν˜• DC-DC μ „λ ₯ λ³€ν™˜ 회둜의 λ™μž‘ λ²”μœ„ 증가 69 4.1 κ³΅μ§„ν˜• μ •λ₯˜κΈ° μž…λ ₯ μž„ν”Όλ˜μŠ€ νŠΉμ„±μ— λ”°λ₯Έ 곡진 μ „λ₯˜μ˜ μˆœν™˜ μ „λ₯˜ νŠΉμ„± 70 4.1.1 κ³΅μ§„ν˜• μ •λ₯˜κΈ° μž…λ ₯ μž„ν”Όλ˜μŠ€μ— λ”°λ₯Έ 직렬 인버터 ꡬ동 κ³΅μ§„ν˜• μ „λ ₯ λ³€ν™˜ 회둜의 νŠΉμ„± 확인 71 4.2 κ³΅μ§„ν˜• μ •λ₯˜κΈ° μž…λ ₯ λ“±κ°€ μž„ν”Όλ˜μŠ€μ˜ 변동에 λŒ€ν•œ Class EF2 μΈλ²„ν„°μ˜ νŠΉμ„± 확인 77 4.3 λŠ₯동 κ³΅μ§„ν˜• Class E μ •λ₯˜κΈ° κ°œμš” 83 4.3.1 μ œμ•ˆν•˜λŠ” κ³΅μ§„ν˜• λŠ₯동 Class E μ •λ₯˜κΈ° λ™μž‘μ˜ 뢄석 88 4.4 κΈ°μ‘΄ μ—°κ΅¬μ™€μ˜ νŠΉμ„± 비ꡐλ₯Ό ν†΅ν•œ μ œμ•ˆν•˜λŠ” μ •λ₯˜κΈ° λ™μž‘μ˜ νŠΉμ§• 확인 104 제 5 μž₯ μ œμ•ˆν•˜λŠ” κ³΅μ§„ν˜• DC-DC μ „λ ₯ λ³€ν™˜ 회둜의 섀계 108 5.1 μΈλ²„ν„°μ˜ 섀계 109 5.1.1 Class EF2 μΈλ²„ν„°μ˜ κΈ°λ³Έ λ™μž‘ 및 섀계 110 5.1.2 직렬 λͺ¨λ“ˆν™” μ—°κ²°μ˜ μ‹€μ œ κ΅¬ν˜„ μ‹œ κ³ λ € 사항 115 5.1.3 직렬 κ³΅μ§„ν˜• Class EF2 μΈλ²„ν„°μ˜ 섀계 120 5.2 λŠ₯동 κ³΅μ§„ν˜• Class E μ •λ₯˜κΈ°μ˜ 섀계 126 5.2.1 μ΄ˆκΈ°κ°’ 섀계λ₯Ό μœ„ν•œ GaN μ „λ ₯ μŠ€μœ„μΉ˜μ˜ μ„ μ • 126 5.2.2 μŠ€μœ„μΉ˜ νŠΉμ„±μ„ κ³ λ €ν•œ 섀계 쑰건의 μ„ μ • 129 5.2.3 μ„ μ •λœ 섀계 쑰건의 λŠ₯동 μ •λ₯˜ νŠΉμ„± 확인 135 제 6 μž₯ λͺ¨μ˜ μ‹€ν—˜ 및 μ‹€ν—˜ κ²°κ³Ό 138 6.1 λͺ¨μ˜ μ‹€ν—˜ 138 6.1.1 인버터 λͺ¨λΈλ§μ˜ μ‹ λ’°μ„± 검증 138 6.1.2 직렬 κ³΅μ§„ν˜• Class EF2 μΈλ²„ν„°μ˜ λͺ¨μ˜ μ‹€ν—˜ 146 6.1.3 μ •λ₯˜κΈ° λͺ¨λΈλ§μ˜ μ‹ λ’°μ„± 검증 156 6.1.4 λŠ₯동 κ³΅μ§„ν˜• Class E μ •λ₯˜κΈ°μ˜ λͺ¨μ˜ μ‹€ν—˜ 159 6.2 μ‹€ν—˜ κ²°κ³Ό 168 6.2.1 직렬 κ³΅μ§„ν˜• Class EF2 μΈλ²„ν„°μ˜ μ‹€ν—˜ κ²°κ³Ό 173 6.2.2 λŠ₯동 κ³΅μ§„ν˜• Class E μ •λ₯˜κΈ°μ˜ μ‹€ν—˜ κ²°κ³Ό 180 6.2.3 κ³΅μ§„ν˜• DC-DC μ „λ ₯ λ³€ν™˜ 회둜의 μž…λ ₯, 좜λ ₯ 쑰건 변동에 λ‹€λ₯Έ νŠΉμ„± 확인 187 6.2.4 μ‹€ν—˜ κ²°κ³Ό 뢄석 189 제 7 μž₯ κ²°λ‘  195 7.1 연ꡬ κ²°κ³Ό 195 7.2 ν–₯ν›„ 연ꡬ 198 제 8 μž₯ 뢀둝 200 8.1 GaN μŠ€μœ„μΉ˜ ꡬ쑰 및 κΈ°λ³Έ λ™μž‘ 200 8.2 μ œμ•ˆν•˜λŠ” λŠ₯동 μ •λ₯˜κΈ°μ˜ νŠΉμ„± λ„μΆœ 201 8.3 λ³Έ μ—°κ΅¬μ—μ„œ μ‚¬μš©ν•œ μ „μ„ μ˜ μž„ν”Όλ˜μŠ€ μΈ‘μ • κ²°κ³Ό 204 8.4 Murata LXRW19V201-058 버렉터λ₯Ό μ‚¬μš©ν•œ μœ„μƒ μ œμ–΄ 회둜의 ꡬ성 및 νŠΉμ„± 205λ°•
    corecore