79 research outputs found

    Spatially-Coupled Precoded Rateless Codes

    Full text link
    Raptor codes are rateless codes that achieve the capacity on the binary erasure channels. However the maximum degree of optimal output degree distribution is unbounded. This leads to a computational complexity problem both at encoders and decoders. Aref and Urbanke investigated the potential advantage of universal achieving-capacity property of proposed spatially-coupled (SC) low-density generator matrix (LDGM) codes. However the decoding error probability of SC-LDGM codes is bounded away from 0. In this paper, we investigate SC-LDGM codes concatenated with SC low-density parity-check codes. The proposed codes can be regarded as SC Hsu-Anastasopoulos rateless codes. We derive a lower bound of the asymptotic overhead from stability analysis for successful decoding by density evolution. The numerical calculation reveals that the lower bound is tight. We observe that with a sufficiently large number of information bits, the asymptotic overhead and the decoding error rate approach 0 with bounded maximum degree

    ALOHA Random Access that Operates as a Rateless Code

    Get PDF
    Various applications of wireless Machine-to-Machine (M2M) communications have rekindled the research interest in random access protocols, suitable to support a large number of connected devices. Slotted ALOHA and its derivatives represent a simple solution for distributed random access in wireless networks. Recently, a framed version of slotted ALOHA gained renewed interest due to the incorporation of successive interference cancellation (SIC) in the scheme, which resulted in substantially higher throughputs. Based on similar principles and inspired by the rateless coding paradigm, a frameless approach for distributed random access in slotted ALOHA framework is described in this paper. The proposed approach shares an operational analogy with rateless coding, expressed both through the user access strategy and the adaptive length of the contention period, with the objective to end the contention when the instantaneous throughput is maximized. The paper presents the related analysis, providing heuristic criteria for terminating the contention period and showing that very high throughputs can be achieved, even for a low number for contending users. The demonstrated results potentially have more direct practical implications compared to the approaches for coded random access that lead to high throughputs only asymptotically.Comment: Revised version submitted to IEEE Transactions on Communication

    Efficient Termination of Spatially-Coupled Codes

    Full text link
    Spatially-coupled low-density parity-check codes attract much attention due to their capacity-achieving performance and a memory-efficient sliding-window decoding algorithm. On the other hand, the encoder needs to solve large linear equations to terminate the encoding process. In this paper, we propose modified spatially-coupled codes. The modified (\dl,\dr,L) codes have less rate-loss, i.e., higher coding rate, and have the same threshold as (\dl,\dr,L) codes and are efficiently terminable by using an accumulator

    Probabilistic Rateless Multiple Access for Machine-to-Machine Communication

    Get PDF
    Future machine to machine (M2M) communications need to support a massive number of devices communicating with each other with little or no human intervention. Random access techniques were originally proposed to enable M2M multiple access, but suffer from severe congestion and access delay in an M2M system with a large number of devices. In this paper, we propose a novel multiple access scheme for M2M communications based on the capacity-approaching analog fountain code to efficiently minimize the access delay and satisfy the delay requirement for each device. This is achieved by allowing M2M devices to transmit at the same time on the same channel in an optimal probabilistic manner based on their individual delay requirements. Simulation results show that the proposed scheme achieves a near optimal rate performance and at the same time guarantees the delay requirements of the devices. We further propose a simple random access strategy and characterized the required overhead. Simulation results show the proposed approach significantly outperforms the existing random access schemes currently used in long term evolution advanced (LTE-A) standard in terms of the access delay.Comment: Accepted to Publish in IEEE Transactions on Wireless Communication

    Exploiting Capture Effect in Frameless ALOHA for Massive Wireless Random Access

    Full text link
    The analogies between successive interference cancellation (SIC) in slotted ALOHA framework and iterative belief-propagation erasure-decoding, established recently, enabled the application of the erasure-coding theory and tools to design random access schemes. This approach leads to throughput substantially higher than the one offered by the traditional slotted ALOHA. In the simplest setting, SIC progresses when a successful decoding occurs for a single user transmission. In this paper we consider a more general setting of a channel with capture and explore how such physical model affects the design of the coded random access protocol. Specifically, we assess the impact of capture effect in Rayleigh fading scenario on the design of SIC-enabled slotted ALOHA schemes. We provide analytical treatment of frameless ALOHA, which is a special case of SIC-enabled ALOHA scheme. We demonstrate both through analytical and simulation results that the capture effect can be very beneficial in terms of achieved throughput.Comment: Accepted for presentation at IEEE WCNC'14 Track 2 (MAC and Cross-Layer Design

    Spatially-Coupled Nearly-Regular LDPC Code Ensembles for Rate-Flexible Code Design

    Get PDF
    Spatially coupled regular LDPC code ensembles have outstanding performance with belief propagation decoding and can perform close to the Shannon limit. In this paper we investigate the suitability of coupled regular LDPC code ensembles with respect to rate-flexibility. Regular ensembles with good performance and low complexity exist for a variety of specific code rates. On the other hand it can be observed that outside this set of favorable rational rates the complexity and performance become unreasonably high. We therefore propose ensembles with slight irregularity that allow us to smoothly cover the complete range of rational rates. Our simple construction allows a performance with negligible gap to the Shannon limit while maintaining complexity as low as for the best regular code ensembles. At the same time the construction guarantees that asymptotically the minimum distance grows linearly with the length of the coupled blocks
    • …
    corecore