284 research outputs found

    An Efficient Hidden Markov Model for Offline Handwritten Numeral Recognition

    Full text link
    Traditionally, the performance of ocr algorithms and systems is based on the recognition of isolated characters. When a system classifies an individual character, its output is typically a character label or a reject marker that corresponds to an unrecognized character. By comparing output labels with the correct labels, the number of correct recognition, substitution errors misrecognized characters, and rejects unrecognized characters are determined. Nowadays, although recognition of printed isolated characters is performed with high accuracy, recognition of handwritten characters still remains an open problem in the research arena. The ability to identify machine printed characters in an automated or a semi automated manner has obvious applications in numerous fields. Since creating an algorithm with a one hundred percent correct recognition rate is quite probably impossible in our world of noise and different font styles, it is important to design character recognition algorithms with these failures in mind so that when mistakes are inevitably made, they will at least be understandable and predictable to the person working with theComment: 6pages, 5 figure

    An Online Numeral Recognition System Using Improved Structural Features – A Unified Method for Handwritten Arabic and Persian Numerals

    Get PDF
    With the advances in machine learning techniques, handwritten recognition systems also gained importance. Though digit recognition techniques have been established for online handwritten numerals, an optimized technique that is writer independent is still an open area of research. In this paper, we propose an enhanced unified method for the recognition of handwritten Arabic and Persian numerals using improved structural features. A total of 37 structural based features are extracted and Random Forest classifier is used to classify the numerals based on the extracted features. The results of the proposed approach are compared with other classifiers including Support Vector Machine (SVM), Multilayer Perceptron (MLP) and K-Nearest Neighbors (KNN). Four different well-known Arabic and Persian databases are used to validate the proposed method. The obtained average 96.15% accuracy in recognition of handwritten digits shows that the proposed method is more efficient and produces better results as compared to other techniques

    Handwritten Digit Recognition and Classification Using Machine Learning

    Get PDF
    In this paper, multiple learning techniques based on Optical character recognition (OCR) for the handwritten digit recognition are examined, and a new accuracy level for recognition of the MNIST dataset is reported. The proposed framework involves three primary parts, image pre-processing, feature extraction and classification. This study strives to improve the recognition accuracy by more than 99% in handwritten digit recognition. As will be seen, pre-processing and feature extraction play crucial roles in this experiment to reach the highest accuracy

    Reliable pattern recognition system with novel semi-supervised learning approach

    Get PDF
    Over the past decade, there has been considerable progress in the design of statistical machine learning strategies, including Semi-Supervised Learning (SSL) approaches. However, researchers still have difficulties in applying most of these learning strategies when two or more classes overlap, and/or when each class has a bimodal/multimodal distribution. In this thesis, an efficient, robust, and reliable recognition system with a novel SSL scheme has been developed to overcome overlapping problems between two classes and bimodal distribution within each class. This system was based on the nature of category learning and recognition to enhance the system's performance in relevant applications. In the training procedure, besides the supervised learning strategy, the unsupervised learning approach was applied to retrieve the "extra information" that could not be obtained from the images themselves. This approach was very helpful for the classification between two confusing classes. In this SSL scheme, both the training data and the test data were utilized in the final classification. In this thesis, the design of a promising supervised learning model with advanced state-of-the-art technologies is firstly presented, and a novel rejection measurement for verification of rejected samples, namely Linear Discriminant Analysis Measurement (LDAM), is defined. Experiments on CENPARMI's Hindu-Arabic Handwritten Numeral Database, CENPARMI's Numerals Database, and NIST's Numerals Database were conducted in order to evaluate the efficiency of LDAM. Moreover, multiple verification modules, including a Writing Style Verification (WSV) module, have been developed according to four newly defined error categories. The error categorization was based on the different costs of misclassification. The WSV module has been developed by the unsupervised learning approach to automatically retrieve the person's writing styles so that the rejected samples can be classified and verified accordingly. As a result, errors on CENPARMI's Hindu-Arabic Handwritten Numeral Database (24,784 training samples, 6,199 testing samples) were reduced drastically from 397 to 59, and the final recognition rate of this HAHNR reached 99.05%, a significantly higher rate compared to other experiments on the same database. When the rejection option was applied on this database, the recognition rate, error rate, and reliability were 97.89%, 0.63%, and 99.28%, respectivel

    Design of an Offline Handwriting Recognition System Tested on the Bangla and Korean Scripts

    Get PDF
    This dissertation presents a flexible and robust offline handwriting recognition system which is tested on the Bangla and Korean scripts. Offline handwriting recognition is one of the most challenging and yet to be solved problems in machine learning. While a few popular scripts (like Latin) have received a lot of attention, many other widely used scripts (like Bangla) have seen very little progress. Features such as connectedness and vowels structured as diacritics make it a challenging script to recognize. A simple and robust design for offline recognition is presented which not only works reliably, but also can be used for almost any alphabetic writing system. The framework has been rigorously tested for Bangla and demonstrated how it can be transformed to apply to other scripts through experiments on the Korean script whose two-dimensional arrangement of characters makes it a challenge to recognize. The base of this design is a character spotting network which detects the location of different script elements (such as characters, diacritics) from an unsegmented word image. A transcript is formed from the detected classes based on their corresponding location information. This is the first reported lexicon-free offline recognition system for Bangla and achieves a Character Recognition Accuracy (CRA) of 94.8%. This is also one of the most flexible architectures ever presented. Recognition of Korean was achieved with a 91.2% CRA. Also, a powerful technique of autonomous tagging was developed which can drastically reduce the effort of preparing a dataset for any script. The combination of the character spotting method and the autonomous tagging brings the entire offline recognition problem very close to a singular solution. Additionally, a database named the Boise State Bangla Handwriting Dataset was developed. This is one of the richest offline datasets currently available for Bangla and this has been made publicly accessible to accelerate the research progress. Many other tools were developed and experiments were conducted to more rigorously validate this framework by evaluating the method against external datasets (CMATERdb 1.1.1, Indic Word Dataset and REID2019: Early Indian Printed Documents). Offline handwriting recognition is an extremely promising technology and the outcome of this research moves the field significantly ahead

    Advancing Multilingual Handwritten Numeral Recognition with Attention-driven Transfer Learning

    Get PDF
    As deep learning continues to evolve, we have observed huge breakthroughs in the fields of medical imaging, video and frame generation, optical character recognition (OCR), and other domains. In the field of data analysis and document processing, the recognition of handwritten numerals plays a crucial role. This work has led to remarkable changes in OCR, historical handwritten document analysis, and postal automation. In this study, we present a novel framework to overcome this challenge, going beyond digit recognition in only one language. Unlike common methods that focus on a limited set of languages, our method provides a comprehensive solution for recognition of handwritten digit images in 12 different languages. These specific languages are chosen because most of them have fairly distant representations in latent space. We utilize transfer learning, as it reduces the computational cost and maintains the quality of enhanced images and the models’ recognition accuracy. Another strength of our approach is the innovative attention-based module called the MRA module. Our experiments confirm that by applying this module, major progress is made in both image quality and the accuracy of handwritten digit recognition. Notably, we reached high precisions, surpassing nearly 2% improvement in specific languages compared to earlier techniques. In this work, we present a robust and cost-effective approach that handles multilingual handwritten numeral recognition across a wide range of languages. The code and further implementation details are available at https://github.com/CVLab-SHUT/HandWrittenDigitRecognition
    • …
    corecore