1,073 research outputs found

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Lite it fly: An All-Deformable-Butterfly Network

    Full text link
    Most deep neural networks (DNNs) consist fundamentally of convolutional and/or fully connected layers, wherein the linear transform can be cast as the product between a filter matrix and a data matrix obtained by arranging feature tensors into columns. The lately proposed deformable butterfly (DeBut) decomposes the filter matrix into generalized, butterflylike factors, thus achieving network compression orthogonal to the traditional ways of pruning or low-rank decomposition. This work reveals an intimate link between DeBut and a systematic hierarchy of depthwise and pointwise convolutions, which explains the empirically good performance of DeBut layers. By developing an automated DeBut chain generator, we show for the first time the viability of homogenizing a DNN into all DeBut layers, thus achieving an extreme sparsity and compression. Various examples and hardware benchmarks verify the advantages of All-DeBut networks. In particular, we show it is possible to compress a PointNet to < 5% parameters with < 5% accuracy drop, a record not achievable by other compression schemes.Comment: 7 pages, 3 figures, accepted as a brief paper in IEEE Transactions on Neural Networks and Learning Systems (TNNLS

    Sparse Approximate Multifrontal Factorization with Butterfly Compression for High Frequency Wave Equations

    Full text link
    We present a fast and approximate multifrontal solver for large-scale sparse linear systems arising from finite-difference, finite-volume or finite-element discretization of high-frequency wave equations. The proposed solver leverages the butterfly algorithm and its hierarchical matrix extension for compressing and factorizing large frontal matrices via graph-distance guided entry evaluation or randomized matrix-vector multiplication-based schemes. Complexity analysis and numerical experiments demonstrate O(Nlog2N)\mathcal{O}(N\log^2 N) computation and O(N)\mathcal{O}(N) memory complexity when applied to an N×NN\times N sparse system arising from 3D high-frequency Helmholtz and Maxwell problems

    Image Restoration Using Joint Statistical Modeling in Space-Transform Domain

    Full text link
    This paper presents a novel strategy for high-fidelity image restoration by characterizing both local smoothness and nonlocal self-similarity of natural images in a unified statistical manner. The main contributions are three-folds. First, from the perspective of image statistics, a joint statistical modeling (JSM) in an adaptive hybrid space-transform domain is established, which offers a powerful mechanism of combining local smoothness and nonlocal self-similarity simultaneously to ensure a more reliable and robust estimation. Second, a new form of minimization functional for solving image inverse problem is formulated using JSM under regularization-based framework. Finally, in order to make JSM tractable and robust, a new Split-Bregman based algorithm is developed to efficiently solve the above severely underdetermined inverse problem associated with theoretical proof of convergence. Extensive experiments on image inpainting, image deblurring and mixed Gaussian plus salt-and-pepper noise removal applications verify the effectiveness of the proposed algorithm.Comment: 14 pages, 18 figures, 7 Tables, to be published in IEEE Transactions on Circuits System and Video Technology (TCSVT). High resolution pdf version and Code can be found at: http://idm.pku.edu.cn/staff/zhangjian/IRJSM

    Solving the Wide-band Inverse Scattering Problem via Equivariant Neural Networks

    Full text link
    This paper introduces a novel deep neural network architecture for solving the inverse scattering problem in frequency domain with wide-band data, by directly approximating the inverse map, thus avoiding the expensive optimization loop of classical methods. The architecture is motivated by the filtered back-projection formula in the full aperture regime and with homogeneous background, and it leverages the underlying equivariance of the problem and compressibility of the integral operator. This drastically reduces the number of training parameters, and therefore the computational and sample complexity of the method. In particular, we obtain an architecture whose number of parameters scale sub-linearly with respect to the dimension of the inputs, while its inference complexity scales super-linearly but with very small constants. We provide several numerical tests that show that the current approach results in better reconstruction than optimization-based techniques such as full-waveform inversion, but at a fraction of the cost while being competitive with state-of-the-art machine learning methods.Comment: 21 pages, 9 figures, and 4 table
    corecore