553 research outputs found

    A new class of two-channel biorthogonal filter banks and wavelet bases

    Get PDF
    We propose a novel framework for a new class of two-channel biorthogonal filter banks. The framework covers two useful subclasses: i) causal stable IIR filter banks. ii) linear phase FIR filter banks. There exists a very efficient structurally perfect reconstruction implementation for such a class. Filter banks of high frequency selectivity can be achieved by using the proposed framework with low complexity. The properties of such a class are discussed in detail. The design of the analysis/synthesis systems reduces to the design of a single transfer function. Very simple design methods are given both for FIR and IIR cases. Zeros of arbitrary multiplicity at aliasing frequency can be easily imposed, for the purpose of generating wavelets with regularity property. In the IIR case, two new classes of IIR maximally flat filters different from Butterworth filters are introduced. The filter coefficients are given in closed form. The wavelet bases corresponding to the biorthogonal systems are generated. the authors also provide a novel mapping of the proposed 1-D framework into 2-D. The mapping preserves the following: i) perfect reconstruction; ii) stability in the IIR case; iii) linear phase in the FIR case; iv) zeros at aliasing frequency; v) frequency characteristic of the filters

    Theory and design of a class of M-channel IIR cosine-modulated filter banks

    Get PDF
    This letter proposes a method for designing a class of M-channel, causal, stable, perfect reconstruction (PR) IIR cosine-modulated filter banks (CMFB). The proposed CMFB has the same denominator for all its polyphase components in the prototype filter. Therefore, the PR condition is considerably simplified, and it is relatively simple to satisfy the PR and the casual-stable requirements of the IIR CMFB. Design examples show that the proposed IIR CMFB has sharper cutoff, higher stopband attenuation, and passband flatness than its FIR counterparts, especially when the system delay is small.published_or_final_versio

    New design method for two-channel perfect reconstruction IIR filter banks

    Get PDF
    In this paper, a new method for designing perfect reconstruction (PR) two-channel causal stable IIR filter banks is introduced. It is based on a structure previously proposed by Phoong et al. [2]. By using a combination of allpass and linear-phase FIR functions, the bumping problem found in the conventional structural PR filter bank is significantly suppressed. The design problem is formulated as a polynomial approximation problem and is solved effectively using the Remez exchange algorithm. Filter banks with flexible stopband attenuation and system delay can readily be obtained using the proposed algorithm.published_or_final_versio

    On the theory and design of a class of PR uniform and recombination nonuniform causal-Stable IIR cosine modulated filter banks

    Get PDF
    This paper studies the theory and design of a class of perfect reconstruction (PR) uniform causal-stable infinite-impulse response (IIR) cosine modulated filter banks (CMFBs). The design approach is also applicable to the design of PR recombination nonuniform (RN) IIR CMFBs. The polyphase components of the prototype filters of these IIR CMFBs are assumed to have the same denominator so as to simplify the PR condition. In designing the proposed IIR CMFB, a PR FIR CMFB with similar specifications is first designed. The finite-impulse response prototype filter is then converted to a nearly PR (NPR) IIR CMFB using a modified model reduction technique. The NPR IIR CMFB so obtained has a reasonably low reconstruction error. Its denominator is designed to be a polynomial in z M, where M is the number of channels, to simplify the PR condition. Finally, it is employed as the initial guess to constrained nonlinear optimization software for the design of the PR IIR CMFB. Design results show that both NPR and PR IIR CMFBs with good frequency characteristics and different system delays can be obtained by the proposed method. By using these IIR CMFBs in the RN CMFBs, new RN NPR and PR IIR CMFBs can be obtained similarly. © 2008 IEEE.published_or_final_versio

    On the theory and design of a class of PR causal-stable IIR non-uniform recombination cosine modulated filter banks

    Get PDF
    This paper studies the theory and design of a class of perfect reconstruction (PR) causal-stable nonuniform recombination cosine modulated filter banks (RN CMFBs) with IIR filters. It is based on the RN CMFB previously proposed by one of the author. A PR FIR RN CMFB of similar specification is first designed. The prototype filters of the CMFBs are then model reduced to obtain a nearly PR (NPR) IIR RN CMFB by modifying a model reduction technique proposed by Brandenstein and Unbehauen. With these NPR IIR RN CMFBs as initial guess, PR IIR RN CMFB with very good frequency characteristics can be obtained readily by solving a constrained nonlinear optimisation problem using for example the function fmincom from MATLAB. Design results show that the proposed method is very effective in designing PR RN IIR CMFBs with good frequency characteristics and different system delays. © 2005 IEEE.published_or_final_versio

    Role of anticausal inverses in multirate filter-banks. I. System-theoretic fundamentals

    Get PDF
    In a maximally decimated filter bank with identical decimation ratios for all channels, the perfect reconstructibility property and the nature of reconstruction filters (causality, stability, FIR property, and so on) depend on the properties of the polyphase matrix. Various properties and capabilities of the filter bank depend on the properties of the polyphase matrix as well as the nature of its inverse. In this paper we undertake a study of the types of inverses and characterize them according to their system theoretic properties (i.e., properties of state-space descriptions, McMillan degree, degree of determinant, and so forth). We find in particular that causal polyphase matrices with anticausal inverses have an important role in filter bank theory. We study their properties both for the FIR and IIR cases. Techniques for implementing anticausal IIR inverses based on state space descriptions are outlined. It is found that causal FIR matrices with anticausal FIR inverses (cafacafi) have a key role in the characterization of FIR filter banks. In a companion paper, these results are applied for the factorization of biorthogonal FIR filter banks, and a generalization of the lapped orthogonal transform called the biorthogonal lapped transform (BOLT) developed

    Cyclic LTI systems in digital signal processing

    Get PDF
    Cyclic signal processing refers to situations where all the time indices are interpreted modulo some integer L. In such cases, the frequency domain is defined as a uniform discrete grid (as in L-point DFT). This offers more freedom in theoretical as well as design aspects. While circular convolution has been the centerpiece of many algorithms in signal processing for decades, such freedom, especially from the viewpoint of linear system theory, has not been studied in the past. In this paper, we introduce the fundamentals of cyclic multirate systems and filter banks, presenting several important differences between the cyclic and noncyclic cases. Cyclic systems with allpass and paraunitary properties are studied. The paraunitary interpolation problem is introduced, and it is shown that the interpolation does not always succeed. State-space descriptions of cyclic LTI systems are introduced, and the notions of reachability and observability of state equations are revisited. It is shown that unlike in traditional linear systems, these two notions are not related to the system minimality in a simple way. Throughout the paper, a number of open problems are pointed out from the perspective of the signal processor as well as the system theorist

    Alias-free, real coefficient m-band QMF banks for arbitrary m

    Get PDF
    Based on a generalized framework for alias free QMF banks, a theory is developed for the design of uniform QMF banks with real-coefficient analysis filters, such that aliasing can be completely canceled by appropriate choice of real-coefficient synthesis filters. These results are then applied for the derivation of closed-form expressions for the synthesis filters (both FIR and IIR), that ensure cancelation of aliasing for a given set of analysis filters. The results do not involve the inversion of the alias-component (AC) matrix

    Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having the perfect-reconstruction property

    Get PDF
    Based on the concept of losslessness in digital filter structures, this paper derives a general class of maximally decimated M-channel quadrature mirror filter banks that lead to perfect reconstruction. The perfect-reconstruction property guarantees that the reconstructed signalhat{x} (n)is a delayed version of the input signal x (n), i.e.,hat{x} (n) = x (n - n_{0}). It is shown that such a property can be satisfied if the alias component matrix (AC matrix for short) is unitary on the unit circle of the z plane. The number of channels M is arbitrary, and when M is two, the results reduce to certain recently reported 2-channel perfect-reconstruction QMF structures. A procedure, based on recently reported FIR cascaded-lattice structures, is presented for optimal design of such FIR M-channel filter banks. Design examples are included
    corecore