17,741 research outputs found

    Landauer's principle as a special case of Galois connection

    Full text link
    It is demonstrated how to construct a Galois connection between two related systems with entropy. The construction, called the Landauer's connection, describes coupling between two systems with entropy. It is straightforward and transfers changes in one system to the other one preserving ordering structure induced by entropy. The Landauer's connection simplifies the description of the classical Landauer's principle for computational systems. Categorification and generalization of the Landauer's principle opens area of modelling of various systems in presence of entropy in abstract terms.Comment: 24 pages, 3 figure

    Signal Processing during Developmental Multicellular Patterning

    Get PDF
    Developing design strategies for tissue engineering and regenerative medicine is limited by our nascent understanding of how cell populations self-organize into multicellular structures on synthetic scaffolds. Mechanistic insights can be gleaned from the quantitative analysis of biomolecular signals that drive multicellular patterning during the natural processes of embryonic and adult development. This review describes three critical layers of signal processing that govern multicellular patterning: spatiotemporal presentation of extracellular cues, intracellular signaling networks that mediate crosstalk among extracellular cues, and finally, intranuclear signal integration at the level of transcriptional regulation. At every level in this hierarchy, the quantitative attributes of signals have a profound impact on patterning. We discuss how experiments and mathematical models are being used to uncover these quantitative features and their impact on multicellular phenotype

    Maternal nutritional status, C1 metabolism and offspring DNA methylation: a review of current evidence in human subjects.

    Get PDF
    : Evidence is growing for the long-term effects of environmental factors during early-life on later disease susceptibility. It is believed that epigenetic mechanisms (changes in gene function not mediated by DNA sequence alteration), particularly DNA methylation, play a role in these processes. This paper reviews the current state of knowledge of the involvement of C1 metabolism and methyl donors and cofactors in maternal diet-induced DNA methylation changes in utero as an epigenetic mechanism. Methyl groups for DNA methylation are mostly derived from the diet and supplied through C1 metabolism by way of choline, betaine, methionine or folate, with involvement of riboflavin and vitamins B6 and B12 as cofactors. Mouse models have shown that epigenetic features, for example DNA methylation, can be altered by periconceptional nutritional interventions such as folate supplementation, thereby changing offspring phenotype. Evidence of early nutrient-induced epigenetic change in human subjects is scant, but it is known that during pregnancy C1 metabolism has to cope with high fetal demands for folate and choline needed for neural tube closure and normal development. Retrospective studies investigating the effect of famine or season during pregnancy indicate that variation in early environmental exposure in utero leads to differences in DNA methylation of offspring. This may affect gene expression in the offspring. Further research is needed to examine the real impact of maternal nutrient availability on DNA methylation in the developing fetus
    corecore