900 research outputs found

    Modeling and Lyapunov-designed based on adaptive gain sliding mode control for wind turbines

    Get PDF
    In this paper, modeling and the Lyapunov-designed control approach are studied for the Wind Energy Conversion Systems (WECS). The objective of this study is to ensure the maximum energy production of a WECS while reducing the mechanical stress on the shafts (turbine and generator). Furthermore, the proposed control strategy aims to optimize the wind energy captured by the wind turbine operating under rating wind speed, using an Adaptive Gain Sliding Mode Control (AG-SMC). The adaptation for the sliding gain and the torque estimation are carried out using the sliding surface as an improved solution that handles the conventional sliding mode control. Furthermore, the resultant WECS control policy is relatively simple, meaning the online computational cost and time are considerably reduced. Time-domain simulation studies are performed to discuss the effectiveness of the proposed control strateg

    Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator

    Get PDF
    © 2021 Springer. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1007/s13198-019-00905-7This paper presents the application nonlinear control to regulate the rotor currents and control the active and reactive powers generated by the Doubly Fed Induction Generator used in the Wind Energy Conversion System (WECS). The proposed control strategies are based on Lyapunov stability theory and include back-stepping control (BSC) and super-twisting sliding mode control. The overall WECS model and control scheme are developed in MATLAB/Simulink and the simulation results have shown that the BSC leads to superior performance and improved transient response as compared to the STSMC controller.Peer reviewe

    Nonlinear Dual-Mode Control of Variable-Speed Wind Turbines with Doubly Fed Induction Generators

    Full text link
    This paper presents a feedback/feedforward nonlinear controller for variable-speed wind turbines with doubly fed induction generators. By appropriately adjusting the rotor voltages and the blade pitch angle, the controller simultaneously enables: (a) control of the active power in both the maximum power tracking and power regulation modes, (b) seamless switching between the two modes, and (c) control of the reactive power so that a desirable power factor is maintained. Unlike many existing designs, the controller is developed based on original, nonlinear, electromechanically-coupled models of wind turbines, without attempting approximate linearization. Its development consists of three steps: (i) employ feedback linearization to exactly cancel some of the nonlinearities and perform arbitrary pole placement, (ii) design a speed controller that makes the rotor angular velocity track a desired reference whenever possible, and (iii) introduce a Lyapunov-like function and present a gradient-based approach for minimizing this function. The effectiveness of the controller is demonstrated through simulation of a wind turbine operating under several scenarios.Comment: 14 pages, 9 figures, accepted for publication in IEEE Transactions on Control Systems Technolog

    Effects of POD control on a DFIG wind turbine structural system

    Get PDF
    This paper investigates the effects power oscillation damping (POD) controller could have on a wind turbine structural system. Most of the published work in this area has been done using relatively simple aerodynamic and structural models of a wind turbine which cannot be used to investigate the detailed interactions between electrical and mechanical components of the wind turbine. Therefore, a detailed model that combines electrical, structural and aerodynamic characteristics of a grid-connected Doubly Fed Induction Generator (DFIG) based wind turbine has been developed by adapting the NREL (National Renewable Energy Laboratory) 5MW wind turbine model within FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code. This detailed model is used to evaluate the effects of POD controller on the wind turbine system. The results appear to indicate that the effects of POD control on the WT structural system are comparable or less significant as those caused by wind speed variations. Furthermore, the results also reveal that the effects of a transient three-phase short circuit fault on the WT structural system are much larger than those caused by the POD controller

    An enhanced DC-link voltage response for wind-driven doubly fed induction generator using adaptive fuzzy extended state observer and sliding mode control

    Get PDF
    This paper presents an enhancement method to improve the performance of the DC-link voltage loop regulation in a Doubly-Fed Induction Generator (DFIG)- based wind energy converter. An intelligent, combined control approach based on a metaheuristics-tuned Second-Order Sliding Mode (SOSM) controller and an adaptive fuzzy-scheduled Extended State Observer (ESO) is proposed and successfully applied. The proposed fuzzy gains-scheduling mechanism is performed to adaptively tune and update the bandwidth of the ESO while disturbances occur. Besides common time-domain performance indexes, bounded limitations on the effective parameters of the designed Super Twisting (STA)-based SOSM controllers are set thanks to the Lyapunov theory and used as nonlinear constraints for the formulated hard optimization control problem. A set of advanced metaheuristics, such as Thermal Exchange Optimization (TEO), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Harmony Search Algorithm (HSA), Water Cycle Algorithm (WCA), and Grasshopper Optimization Algorithm (GOA), is considered to solve the constrained optimization problem. Demonstrative simulation results are carried out to show the superiority and effectiveness of the proposed control scheme in terms of grid disturbances rejection, closed-loop tracking performance, and robustness against the chattering phenomenon. Several comparisons to our related works, i.e., approaches based on TEO-tuned PI controller, TEO-tuned STA-SOSM controller, and STA-SOSM controller-based linear observer, are presented and discussed

    A new robust control using adaptive fuzzy sliding mode control for a DFIG supplied by a 19-level inverter with less number of switches

    Get PDF
    This article presents the powers control of a variable speed wind turbine based on a doubly fed induction generator (DFIG) because of their advantages in terms of economy and control. The considered system consists of a DFIG whose stator is connected directly to the electrical network and its rotor is supplied by a 19-level inverter with less number of switches for minimize the harmonics absorbed by the DFIG, reducing switching frequency, high power electronic applications because of their ability to generate a very good quality of waveforms, and their low voltage stress across the power devices. In order to control independently active and reactive powers provided by the stator side of the DFIG to the grid and ensure high performance and a better execution, three types of robust controllers have been studied and compared in terms of power reference tracking, response to sudden speed variations, sensitivity to perturbations and robustness against machine parameters variations.В статье описывается управление мощностью ветряной турбины переменной скорости на основе асинхронного генератора двойного питания ввиду их преимуществ с точки зрения экономичности и управления. Рассматриваемая система состоит из асинхронного генератора двойного питания, статор которого подключен непосредственно к электрической сети, а его ротор питается от 19-уровневого инвертора с меньшим количеством коммутаторов для минимизации гармоник, поглощаемых генератором, уменьшая частоту переключения, и устройств силовой электроники вследствие их способности генерировать высокое качество сигналов и низкого уровня напряжения на них. Чтобы независимо управлять активной и реактивной мощностью, подаваемой стороной статора указанного генератора в сеть, и обеспечивать высокую производительность и лучшее конструктивное исполнение, изучены и сопоставлены три типа робастных контроллеров с точки зрения отслеживания мощности, реакции на внезапное изменение скорости, чувствительности к возмущениям и устойчивости к изменениям параметров машины

    DFIG-Based Wind Turbine Robust Control Using High-Order Sliding Modes and a High Gain Observer

    No full text
    International audienceThis paper deals with the power generation control in variable speed wind turbines. In this context, a control strategy is proposed to ensure power extraction optimization of a DFIG-based wind turbine. The proposed control strategy combines an MPPT using a high gain observer and second-order sliding mode for the DFIG control. This strategy presents attractive features such as chattering-free behavior, finite reaching time, robustness and unmodeled dynamics (generator and turbine). The overall strategy has been validated on a 1.5-MW three-blade wind turbine using the NREL wind turbine simulator FAST

    Adaptive fractional order terminal sliding mode control of a doubly fed induction generator- based wind energy system

    Get PDF
    The dynamic model of a doubly fed induction generator (DFIG)-based wind energy system is subjected to nonlinear dynamics, uncertainties, and external disturbances. In the presence of such nonlinear effects, a high-performance control system is required to guarantee the smooth and maximum power transfer from the wind energy system to the ac grids. This paper proposes a novel fractional order adaptive terminal sliding mode control system for both the rotor and grid side converters of the DFIG system. The stability of the closed loop is ensured using the fractional order Lyapunov theorem. Numerical results are presented to show the superiority of the proposed control method over the classical sliding mode control system and the proportional integral controllers

    Torque estimator using MPPT method for wind turbines

    Get PDF
    In this work, we presents a control scheme of the interface of a grid connected Variable Speed Wind Energy Generation System based on Doubly Fed Induction Generator (DFIG). The vectorial strategy for oriented stator flux GADA has been developed To extract the maximum power MPPT from the wind turbine. It uses a second order sliding mode controller and Kalman observer, using the super twisting algorithm. The simulation describes the effectiveness of the control strategy adopted.For A step and random profiles of the wind speed, reveals better tracking and perfect convergence of electromagnetic torque and concellation of reactive power to the stator. This control limits the mechanical stress on the tansmission shaft, improves the quality of the currents generated on the grid and optimizes the efficiency of the conversion chain
    corecore