2 research outputs found

    Design of a High-Speed Optical Interconnect for Scalable Shared Memory Multiprocessors

    No full text
    This paper proposes a highly connected optical interconnect based architecture that maximizes the channel availability for future scalable parallel computers such as Distributed Shared Memory (DSM) multiprocessors and cluster networks. As the system size increases, various messages (requests, responses and acknowledgments) increase in the network resulting in contention. This results in increasing the remote memory access latency and significantly affects the performance of these parallel computers. As a solution, we propose an architecture called RAPID (Reconfigurable and scalable All-Photonic Interconnect for Distributed-shared memory), that provides low remote memory access latency by providing fast and efficient unicast, multicast and broadcast capabilities using a combination of aggressively designed WDM, TDM and SDM techniques. We evaluated RAPID based on network characteristics and by simulation using synthetic traffic workloads and compared it against other networks such as electrical ring, torus, mesh and hypercube networks. We found that RAPID outperforms all networks and satisfies most of the requirements of parallel computer design such as low latency, high bandwidth, high connectivity, and easy scalability.

    COMPILER TECHNIQUES FOR EFFICIENT COMMUNICATIONS IN MULTIPROCESSOR SYSTEMS

    Get PDF
    Technical advances have brought circuit switching back to the stage of interconnection network design for high performance computing. Although circuit switching has long connection establishment delays and the dedication of connections prevents other communicating nodes from sharing the network, it has simple control logic and significant cost advantage over packet or wormhole switching. With the proper assistance from compilers, circuit switching has the potential of providing significant performance benefits when connections can be established prior to the actual communication. This dissertation presents a novel compilation framework for achieving efficient communications in circuit switching interconnection networks. The goal of the framework is to identify communication patterns in Single-Program-Multiple-Data (SPMD) parallel applications and compile these patterns as network configuration directives. This can significantly reduce the communication overhead on circuit switching interconnection networks. A powerful representation scheme is developed in this research to capture the property of communication patterns and allow manipulation of these patterns. Based on the temporal and spatial localities of communications and the capability of the compiler to identify the communication patterns, we classify communication patterns into three categories - static, persistent, and dynamic. We target static and persistent communications, which are dominant in most parallel applications. To identify communication patterns, we develop a novel symbolic expression analysis. We develop certain compiler techniques for analyzing communication patterns. Since the underlying network capacity is limited, we develop an algorithm to partition the program into phases based on the communication requirements and network capacity. To demonstrate the effectiveness of our framework, we implement an experimental compiler. The compiler identifies the communication patterns from the source code, partitions the program into phases, and inserts the network configuration directives at phase boundaries to achieve efficient communications. The compiler also can generate communication traces, which provides useful information about the communication pattern correlated to the structure of the source code. We develop a multiprocessor system simulator to evaluate our techniques. Our simulation-based performance analysis demonstrates that using our compiler techniques can achieve the same level, or even better level of communication performance than fast packet switching networks while using much less expensive circuit switches
    corecore