23 research outputs found

    Rateless Codes with Progressive Recovery for Layered Multimedia Delivery

    Full text link
    This paper proposes a novel approach, based on unequal error protection, to enhance rateless codes with progressive recovery for layered multimedia delivery. With a parallel encoding structure, the proposed Progressive Rateless codes (PRC) assign unequal redundancy to each layer in accordance with their importance. Each output symbol contains information from all layers, and thus the stream layers can be recovered progressively at the expected received ratios of output symbols. Furthermore, the dependency between layers is naturally considered. The performance of the PRC is evaluated and compared with some related UEP approaches. Results show that our PRC approach provides better recovery performance with lower overhead both theoretically and numerically

    Unequal Error Protection Raptor Codes

    Get PDF
    We design Unequal Error Protection (UEP) Raptor codes with the UEP property provided by the precode part of Raptor codes which is usually a Low Density Parity Check (LDPC) code. Existing UEP Raptor codes apply the UEP property on the Luby transform (LT) code part of Raptor codes. This approach lowers the bit erasure rate (BER) of the more important bits (MIB) of the data decoded by the LT part of the decoder of Raptor code at the expense of degrading the BER performance of Less Important Bits (LIB), and hence the overall BER of the data passed from the LT part to the LDPC part of the decoder is higher compared to the case of using an Equal Error Protection (EEP) LT code. The proposed UEP Raptor code design has the structure of UEP LDPC code and EEP LT code so that it has the advantage of passing data blocks with lower BER from the LT code part to the LDPC code part of the decoder. This advantage is translated into improved performance in terms of required overhead and achieved BER on both the MIB bits and LIB bits of the decoded data compared to UEP Raptor codes applying the UEP property on the LT part. We propose two design schemes. The first combines a partially regular LDPC code which has UEP properties with an EEP LT code, and the second scheme uses two LDPC codes with different code rates in the precode part such that the MIB bits are encoded using the LDPC code with lower rate and the LT part is EEP. Simulations of both designs exhibit improved BER performance on both the MIB bits and LIB bits while consuming smaller overheads. The second design can be used to provide unequal protection for cases where the MIB bits comprise a fraction of more than 0.4 of the source data which is a case where UEP Raptor codes with UEP LT codes perform poorly

    Expanding window fountain codes for unequal error protection

    Get PDF
    A novel approach to provide unequal error protection (UEP) using rateless codes over erasure channels, named Expanding Window Fountain (EWF) codes, is developed and discussed. EWF codes use a windowing technique rather than a weighted (non-uniform) selection of input symbols to achieve UEP property. The windowing approach introduces additional parameters in the UEP rateless code design, making it more general and flexible than the weighted approach. Furthermore, the windowing approach provides better performance of UEP scheme, which is confirmed both theoretically and experimentally. © 2009 IEEE

    Expanding window fountain codes for unequal error protection

    Get PDF
    A novel approach to provide unequal error protection (UEP) using rateless codes over erasure channels, named Expanding Window Fountain (EWF) codes, is developed and discussed. EWF codes use a windowing technique rather than a weighted (non-uniform) selection of input symbols to achieve UEP property. The windowing approach introduces additional parameters in the UEP rateless code design, making it more general and flexible than the weighted approach. Furthermore, the windowing approach provides better performance of UEP scheme, which is confirmed both theoretically and experimentally. © 2009 IEEE

    Buffer-Based Distributed LT Codes

    Full text link
    We focus on the design of distributed Luby transform (DLT) codes for erasure networks with multiple sources and multiple relays, communicating to a single destination. The erasure-floor performance of DLT codes improves with the maximum degree of the relay-degree distribution. However, for conventional DLT codes, the maximum degree is upper-bounded by the number of sources. An additional constraint is that the sources are required to have the same information block length. We introduce a DD-bit buffer for each source-relay link, which allows the relay to select multiple encoded bits from the same source for the relay-encoding process; thus, the number of sources no longer limits the maximum degree at the relay. Furthermore, the introduction of buffers facilitates the use of different information block sizes across sources. Based on density evolution we develop an asymptotic analytical framework for optimization of the relay-degree distribution. We further integrate techniques for unequal erasure protection into the optimization framework. The proposed codes are considered for both lossless and lossy source-relay links. Numerical examples show that there is no loss in erasure performance for transmission over lossy source-relay links as compared to lossless links. Additional delays, however, may occur. The design framework and our contributions are demonstrated by a number of illustrative examples, showing the improvements obtained by the proposed buffer-based DLT codes.Comment: 14 pages, 17 figures, submitte
    corecore