6 research outputs found

    A data analytic approach to automatic fault diagnosis and prognosis for distribution automation

    Get PDF
    Distribution Automation (DA) is deployed to reduce outages and to rapidly reconnect customers following network faults. Recent developments in DA equipment have enabled the logging of load and fault event data, referred to as ‘pick-up activity’. This pick-up activity provides a picture of the underlying circuit activity occurring between successive DA operations over a period of time and has the potential to be accessed remotely for off-line or on-line analysis. The application of data analytics and automated analysis of this data supports reactive fault management and post fault investigation into anomalous network behavior. It also supports predictive capabilities that identify when potential network faults are evolving and offers the opportunity to take action in advance in order to mitigate any outages. This paper details the design of a novel decision support system to achieve fault diagnosis and prognosis for DA schemes. It combines detailed data from a specific DA device with rule-based, data mining and clustering techniques to deliver the diagnostic and prognostic functions. These are applied to 11kV distribution network data captured from Pole Mounted Auto-Reclosers (PMARs) as provided by a leading UK network operator. This novel automated analysis system diagnoses the nature of a circuit’s previous fault activity, identifies underlying anomalous circuit activity, and highlights indications of problematic events gradually evolving into a full scale circuit fault. The novel contributions include the tackling of ‘semi-permanent faults’ and the re-usable methodology and approach for applying data analytics to any DA device data sets in order to provide diagnostic decisions and mitigate potential fault scenarios

    Model-free computation of ultra-short-term prediction intervals of solar irradiance

    Get PDF
    We propose an ultra-short-term dynamic interval predictor (DIP) of solar irradiance. Our DIP relies on experimentally observed correlations between the derivative of the solar irradiance and the forecast error in the next time-step. The main originalities of this DIP are (i) its independence from the method used for the point forecast of solar irradiance, (ii) its independence from the error distribution of the point-forecast method. We compare the DIP with the most common prediction interval methods. By using significant data set covering several months of experimental observations, we have observed higher accuracy and lower width of the prediction intervals of the proposed DIP

    Distribution system state estimation-a step towards smart grid

    Get PDF
    State estimation (SE) is well-established at the transmission system level of the electricity grid, where it has been in use for the last few decades and is a most vital component of energy management systems employed in the monitoring and control centers of electric transmission systems. However, its use for the monitoring and control of power distribution systems (DSs) has not yet been widely implemented because DSs have been majorly passive with uni-directional power flows. This scenario is now changing with the advent of smart grid, which is changing the nature of electric distribution networks by embracing more dispersed generation, demand responsive loads, and measurements devices with different data rates. Thus, the development of distribution system state estimation (DSSE) tool is inevitable for the implementation of protection, optimization, and control techniques, and various other features envisioned by the smart grid concept. Due to the inherent characteristics of DS different from those of transmission systems, transmission system state estimation (TSSE) is not applicable directly to DSs. This paper is an attempt to present the state-of-the-art on DSSE as an enabler function for smart grid features. It broadly reviews the development of DSSE, challenges faced by its development, and various DSSE algorithms. Additionally, it identifies some future research lines for DSSE

    Distribution system state estimation-a 1 step towards smart grid

    Get PDF
    State estimation (SE) is well-established at the transmission system level of the electricity grid, where it has been in use for the last few decades and is a most vital component of energy management systems employed in the monitoring and control centers of electric transmission systems. However, its use for the monitoring and control of power distribution systems (DSs) has not yet been widely implemented because DSs have been majorly passive with uni-directional power flows. This scenario is now changing with the advent of smart grid, which is changing the nature of electric distribution networks by embracing more dispersed generation, demand responsive loads, and measurements devices with different data rates. Thus, the development of distribution system state estimation (DSSE) tool is inevitable for the implementation of protection, optimization, and control techniques, and various other features envisioned by the smart grid concept. Due to the inherent characteristics of DS different from those of transmission systems, transmission system state estimation (TSSE) is not applicable directly to distribution systems. This paper is an attempt to present the state-of-the-art on distribution system state estimation as an enabler function for smart grid features. It broadly reviews the development of DSSE, and challenges faced by its development, and various DSSE algorithms, as well as identifies some future research lines for DSS

    Design of Smart Distribution Management System for Obtaining Real-Time Security Analysis and Predictive Operation in Korea

    No full text
    corecore