6 research outputs found

    Design of Finite-Length Irregular Protograph Codes with Low Error Floors over the Binary-Input AWGN Channel Using Cyclic Liftings

    Full text link
    We propose a technique to design finite-length irregular low-density parity-check (LDPC) codes over the binary-input additive white Gaussian noise (AWGN) channel with good performance in both the waterfall and the error floor region. The design process starts from a protograph which embodies a desirable degree distribution. This protograph is then lifted cyclically to a certain block length of interest. The lift is designed carefully to satisfy a certain approximate cycle extrinsic message degree (ACE) spectrum. The target ACE spectrum is one with extremal properties, implying a good error floor performance for the designed code. The proposed construction results in quasi-cyclic codes which are attractive in practice due to simple encoder and decoder implementation. Simulation results are provided to demonstrate the effectiveness of the proposed construction in comparison with similar existing constructions.Comment: Submitted to IEEE Trans. Communication

    Design of Non-Binary Quasi-Cyclic LDPC Codes by ACE Optimization

    Full text link
    An algorithm for constructing Tanner graphs of non-binary irregular quasi-cyclic LDPC codes is introduced. It employs a new method for selection of edge labels allowing control over the code's non-binary ACE spectrum and resulting in low error-floor. The efficiency of the algorithm is demonstrated by generating good codes of short to moderate length over small fields, outperforming codes generated by the known methods.Comment: Accepted to 2013 IEEE Information Theory Worksho

    ๋น„์‹ ๋ขฐ ๊ฒฝ๋กœ ๊ฒ€์ƒ‰ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ์ €๋ฐ€๋„ ํŒจ๋ฆฌํ‹ฐ ์ฒดํฌ ๋ถ€ํ˜ธ๋ฅผ ์œ„ํ•œ ์ €๋ณต์žก๋„ ๋ณตํ˜ธ ๊ธฐ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 8. ๋…ธ์ข…์„ .This dissertation contains the following contributions on the low-complexity decoding schemes of LDPC codes. Two-stage decoding scheme for LDPC codes โ€“ A new stopping criterion for LDPC codes โ€“ A new decoding scheme for LDPC codes with unreliable path search Parallel unreliable path search algorithm Analysis of two-stage decoding schemes โ€“ Validity and complexity analysis First, a new two-stage decoding scheme for low-density parity check (LDPC) codes to lower the error-floor is proposed. The proposed decoding scheme consists of the conventional belief propagation (BP) decoding algorithm as the first-stage decoding and the re-decodings with manipulated log-likelihood ratios (LLRs) of variable nodes as the second-stage decoding. In the first-stage decoding, an early stopping criterion is proposed for early detection of decoding failure and the candidate set of the variable nodes is determined, which can be partly included in the small trapping sets. In the second-stage decoding, the scores of the variable nodes in the candidate set are computed by the proposed unreliable path search algorithm and the variable nodes are sorted in ascending order by their scores for the re-decoding trials. Each re-decoding trial is performed by BP decoding algorithm with manipulated LLR of a selected variable node in the candidate set one at a time with the second early stopping criterion. Secondly, the parallel unreliable path search algorithm is proposed for practical application to the proposed unreliable path search algorithm. In order to reduce the decoding delay and computational complexity, an efficient method for the search algorithm based on the parallel message-passing algorithm in the LDPC decoding is proposed. The parallel unreliable path search algorithm significantly reduces the additional complexity without extra hardware requirements. Finally, the validity and the complexity analysis of the proposed unreliable path search algorithm is presented. The proposed algorithm effectively finds the variable nodes in small trapping sets much more faster than the previous random selection method. Also, it is verified that the additional complexity of the parallel unreliable path search algorithm is less than that of one iteration of iterative decoders.Abstract i Contents iii List of Tables v List of Figures vi 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Overview of LDPC Codes 9 2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Decoding of LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Analysis of LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Density Evolution . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Mean Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Quasi-Cyclic LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 Error-Floor and Trapping Sets . . . . . . . . . . . . . . . . . . . . . 21 3 A New Two-Stage Decoding Scheme with Unreliable Path Search 23 3.1 Overview of The Proposed Two-Stage Decoding Scheme . . . . . . . 26 3.2 First-Stage Decoding with the First Early Stopping Criterion . . . . . 27 3.3 Second-Stage Decoding with Unreliable Path Search Algorithm . . . 36 3.3.1 Scoring by Unreliable Path Search Algorithm . . . . . . . . . 37 3.3.2 LLR Manipulation and Re-decoding with the Second Early Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . 42 4 Parallel Unreliable Path Search Algorithm 44 4.1 Description of Parallel Unreliable Path Search Algorithm . . . . . . . 44 4.2 Scoring by Parallel Unreliable Path Search Algorithm . . . . . . . . . 48 5 Analysis of the Unreliable Path Search Algorithm 51 5.1 Validity of the Unreliable Path Search Algorithm . . . . . . . . . . . 51 5.2 Complexity Analysis of the Unreliable Path Search Algorithm . . . . 56 6 Simulation Results 59 7 Conclusions 65 Abstract (In Korean) 73Docto
    corecore