13,646 research outputs found

    2013-2014 Congestion Management Process (CMP) Supplemental Projects Status Memorandum

    Get PDF
    This memorandum is the seventh review of the status of supplemental projects for major Single Occupancy Vehicle (SOV) capacity-adding projects in the region's Transportation Improvement Programs (TIPs). The Delaware Valley Regional Planning Commission worked with project sponsors to identify or update Congestion Management Process (CMP) commitments for six projects, including five major SOV capacityadding projects in Pennsylvania that did not already have an approved table of supplemental commitments. Commitments for one project in New Jersey are updated in this memorandum. All projects reviewed were found to be making reasonable progress with supplemental projects in accordance with federal CMP regulations. The passage of Pennsylvania Act 89 of 2013 has led to the reactivation of many projects that were on hold for years due to lack of funding. Each of these projects was already in the project pipeline prior to being listed in the FY 2015 -- 2018 PA TIP for Final Design and Construction funds. Supplemental commitment tables for these projects are documented in this memorandu

    Prognostic Reasoner based adaptive power management system for a more electric aircraft

    Get PDF
    This research work presents a novel approach that addresses the concept of an adaptive power management system design and development framed in the Prognostics and Health Monitoring(PHM) perspective of an Electrical power Generation and distribution system(EPGS).PHM algorithms were developed to detect the health status of EPGS components which can accurately predict the failures and also able to calculate the Remaining Useful Life(RUL), and in many cases reconfigure for the identified system and subsystem faults. By introducing these approach on Electrical power Management system controller, we are gaining a few minutes lead time to failures with an accurate prediction horizon on critical systems and subsystems components that may introduce catastrophic secondary damages including loss of aircraft. The warning time on critical components and related system reconfiguration must permits safe return to landing as the minimum criteria and would enhance safety. A distributed architecture has been developed for the dynamic power management for electrical distribution system by which all the electrically supplied loads can be effectively controlled.A hybrid mathematical model based on the Direct-Quadrature (d-q) axis transformation of the generator have been formulated for studying various structural and parametric faults. The different failure modes were generated by injecting faults into the electrical power system using a fault injection mechanism. The data captured during these studies have been recorded to form a ā€œFailure Databaseā€ for electrical system. A hardware in loop experimental study were carried out to validate the power management algorithm with FPGA-DSP controller. In order to meet the reliability requirements a Tri-redundant electrical power management system based on DSP and FPGA has been develope

    Motorway Tidal Flow Lane Control

    Get PDF
    A traffic control case of particular importance occurs when inbound and outbound traffic on a motorway stretch is unbalanced throughout the day. This scenario may benefit of a lane management strategy called tidal flow (or reversible) lane control, in which case the direction of a contraflow buffer lane is reversed according to the needs of each direction. This paper proposes a simple and practical real-time strategy for efficient motorway tidal flow lane control. A switching policy based on the fundamental diagram, that requires only aggregated measurements of density (or occupancy), is adopted. A kinematic wave theory-based traffic flow analysis shows that the proposed strategy provides a Pareto-optimal solution. Simulation studies of the A38(M) Aston Expressway (Birmingham, UK), are used to demonstrate its operation. The results confirm an increase of motorway throughput and a smooth operation of the strategy

    Implementation of a Port-graph Model for Finance

    Get PDF
    In this paper we examine the process involved in the design and implementation of a port-graph model to be used for the analysis of an agent-based rational negligence model. Rational negligence describes the phenomenon that occurred during the financial crisis of 2008 whereby investors chose to trade asset-backed securities without performing independent evaluations of the underlying assets. This has contributed to motivating the search for more effective and transparent tools in the modelling of the capital markets. This paper shall contain the details of a proposal for the use of a visual declarative language, based on strategic port-graph rewriting, as a visual modelling tool to analyse an asset-backed securitisation market.Comment: In Proceedings TERMGRAPH 2018, arXiv:1902.0151

    Empirical exploration of air traffic and human dynamics in terminal airspaces

    Full text link
    Air traffic is widely known as a complex, task-critical techno-social system, with numerous interactions between airspace, procedures, aircraft and air traffic controllers. In order to develop and deploy high-level operational concepts and automation systems scientifically and effectively, it is essential to conduct an in-depth investigation on the intrinsic traffic-human dynamics and characteristics, which is not widely seen in the literature. To fill this gap, we propose a multi-layer network to model and analyze air traffic systems. A Route-based Airspace Network (RAN) and Flight Trajectory Network (FTN) encapsulate critical physical and operational characteristics; an Integrated Flow-Driven Network (IFDN) and Interrelated Conflict-Communication Network (ICCN) are formulated to represent air traffic flow transmissions and intervention from air traffic controllers, respectively. Furthermore, a set of analytical metrics including network variables, complex network attributes, controllers' cognitive complexity, and chaotic metrics are introduced and applied in a case study of Guangzhou terminal airspace. Empirical results show the existence of fundamental diagram and macroscopic fundamental diagram at the route, sector and terminal levels. Moreover, the dynamics and underlying mechanisms of "ATCOs-flow" interactions are revealed and interpreted by adaptive meta-cognition strategies based on network analysis of the ICCN. Finally, at the system level, chaos is identified in conflict system and human behavioral system when traffic switch to the semi-stable or congested phase. This study offers analytical tools for understanding the complex human-flow interactions at potentially a broad range of air traffic systems, and underpins future developments and automation of intelligent air traffic management systems.Comment: 30 pages, 28 figures, currently under revie
    • ā€¦
    corecore