530 research outputs found

    The state of SQL-on-Hadoop in the cloud

    Get PDF
    Managed Hadoop in the cloud, especially SQL-on-Hadoop, has been gaining attention recently. On Platform-as-a-Service (PaaS), analytical services like Hive and Spark come preconfigured for general-purpose and ready to use. Thus, giving companies a quick entry and on-demand deployment of ready SQL-like solutions for their big data needs. This study evaluates cloud services from an end-user perspective, comparing providers including: Microsoft Azure, Amazon Web Services, Google Cloud, and Rackspace. The study focuses on performance, readiness, scalability, and cost-effectiveness of the different solutions at entry/test level clusters sizes. Results are based on over 15,000 Hive queries derived from the industry standard TPC-H benchmark. The study is framed within the ALOJA research project, which features an open source benchmarking and analysis platform that has been recently extended to support SQL-on-Hadoop engines. The ALOJA Project aims to lower the total cost of ownership (TCO) of big data deployments and study their performance characteristics for optimization. The study benchmarks cloud providers across a diverse range instance types, and uses input data scales from 1GB to 1TB, in order to survey the popular entry-level PaaS SQL-on-Hadoop solutions, thereby establishing a common results-base upon which subsequent research can be carried out by the project. Initial results already show the main performance trends to both hardware and software configuration, pricing, similarities and architectural differences of the evaluated PaaS solutions. Whereas some providers focus on decoupling storage and computing resources while offering network-based elastic storage, others choose to keep the local processing model from Hadoop for high performance, but reducing flexibility. Results also show the importance of application-level tuning and how keeping up-to-date hardware and software stacks can influence performance even more than replicating the on-premises model in the cloud.This work is partially supported by the Microsoft Azure for Research program, the European Research Council (ERC) under the EUs Horizon 2020 programme (GA 639595), the Spanish Ministry of Education (TIN2015-65316-P), and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Elevating commodity storage with the SALSA host translation layer

    Full text link
    To satisfy increasing storage demands in both capacity and performance, industry has turned to multiple storage technologies, including Flash SSDs and SMR disks. These devices employ a translation layer that conceals the idiosyncrasies of their mediums and enables random access. Device translation layers are, however, inherently constrained: resources on the drive are scarce, they cannot be adapted to application requirements, and lack visibility across multiple devices. As a result, performance and durability of many storage devices is severely degraded. In this paper, we present SALSA: a translation layer that executes on the host and allows unmodified applications to better utilize commodity storage. SALSA supports a wide range of single- and multi-device optimizations and, because is implemented in software, can adapt to specific workloads. We describe SALSA's design, and demonstrate its significant benefits using microbenchmarks and case studies based on three applications: MySQL, the Swift object store, and a video server.Comment: Presented at 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS

    Performance Characterization of NVMe Flash Devices with Zoned Namespaces (ZNS)

    Full text link
    The recent emergence of NVMe flash devices with Zoned Namespace support, ZNS SSDs, represents a significant new advancement in flash storage. ZNS SSDs introduce a new storage abstraction of append-only zones with a set of new I/O (i.e., append) and management (zone state machine transition) commands. With the new abstraction and commands, ZNS SSDs offer more control to the host software stack than a non-zoned SSD for flash management, which is known to be complex (because of garbage collection, scheduling, block allocation, parallelism management, overprovisioning). ZNS SSDs are, consequently, gaining adoption in a variety of applications (e.g., file systems, key-value stores, and databases), particularly latency-sensitive big-data applications. Despite this enthusiasm, there has yet to be a systematic characterization of ZNS SSD performance with its zoned storage model abstractions and I/O operations. This work addresses this crucial shortcoming. We report on the performance features of a commercially available ZNS SSD (13 key observations), explain how these features can be incorporated into publicly available state-of-the-art ZNS emulators, and recommend guidelines for ZNS SSD application developers. All artifacts (code and data sets) of this study are publicly available at https://github.com/stonet-research/NVMeBenchmarks.Comment: Paper to appear in the https://clustercomp.org/2023/program
    • …
    corecore