2 research outputs found

    A Review on the Structure, Application and Performance of the Passive Microstrip Devices

    Get PDF
    Microstrip technology is widely applied for design and implementation of several communication devices such as filters, diplexers, triplexers, multiplexers, couplers, etc. They are utilized to isolate desired signals and remove disturbing signals. The layout of filters, diplexers and triplexers have two, three and four ports, respectively. Passive filters have at least one pass channel, whereas diplexers have at least two channels to transmit the desired signal, and multiplexers have more passbands with more channels. In order to implement the passive components, first a cell called resonator must be designed. Creativity is very important in resonator design. It must be small and novel to get a better device than previous works. Therefore, the layout of previous reported resonator, used in passive microstrip devices, are studied in this work. There is a fierce competition among designers to miniaturize and increase the device performance. Hence we will investigate them, from the point of view size and performance, in this work. Some diplexers are multi-channel, which are more difficult to design than two-channel diplexers. Therefore, the multi-channel diplexers are less reported than the two-channel diplexers. The design of multiplexers is also very difficult because several channels must be controlled. Hence, they are less designed than filters and diplexers. The diplexers can be bandpass-bandpass or lowpass-bandpass, where the latest is less designed. This is because designing a lowpass-bandpass diplexer needs lowpass and bandpass resonators, whereas the design of a bandpass-bandpass diplexer needs only a bandpass resonator

    A Comprehensive Review on Microstrip Couplers

    Get PDF
    In this work, several types of microstrip couplers are investigated in terms of structure, performance and design methods. These planar 4-ports passive devices transmit a signal through two different channels. Designers' competition has always been in miniaturizing and improving performance of couplers. Some couplers have been offered with a novel structure, which is a special feature. A high-performance coupler should have high isolation and low losses at both channels. The channels are usually overlapped so that the common port return loss in these channels should be low. Among the couplers, those with balanced amplitude and phase are more popular. The popular mathematical analysis methods are even/odd mode analysis, extracting the information from the ABCD matrix and analyzing the equivalent LC circuit of a simple resonator. According to the phase shift value, couplers are classified as 90º and correct multiples of 90º, where a microstrip 0º coupler can be used as a power divider. Some couplers have filtering and harmonic elimination features that are superior to other couplers. However, few designers paid attention to suppressing the harmonics. If the operating frequency is set in according to the type of application, the coupler becomes particularly valuable.ABCD Matri
    corecore