157 research outputs found

    Design and Modeling of a New Biomimetic Soft Robotic Jellyfish Using IPMC-Based Electroactive Polymers

    Get PDF
    Smart materials and soft robotics have been seen to be particularly well-suited for developing biomimetic devices and are active fields of research. In this study, the design and modeling of a new biomimetic soft robot is described. Initial work was made in the modeling of a biomimetic robot based on the locomotion and kinematics of jellyfish. Modifications were made to the governing equations for jellyfish locomotion that accounted for geometric differences between biology and the robotic design. In particular, the capability of the model to account for the mass and geometry of the robot design has been added for better flexibility in the model setup. A simple geometrically defined model is developed and used to show the feasibility of a proposed biomimetic robot under a prescribed geometric deformation to the robot structure. A more robust mechanics model is then developed which uses linear beam theory is coupled to an equivalent circuit model to simulate actuation of the robot with ionic polymer-metal composite (IPMC) actuators. The mechanics model of the soft robot is compared to that of the geometric model as well as biological jellyfish swimming to highlight its improved efficiency. The design models are characterized against a biological jellyfish model in terms of propulsive efficiency. Using the mechanics model, the locomotive energetics as modeled in literature on biological jellyfish are explored. Locomotive efficiency and cost as a function of swimming cycles are examined for various swimming modes developed, followed by an analysis of the initial transient and steady-state swimming velocities. Applications for fluid pumping or thrust vectoring utilizing the same basic robot design are also proposed. The new design shows a clear advantage over its purely biological counterpart for a soft-robot, with the newly proposed biomimetic swimming mode offering enhanced swimming efficiency and steady-state velocities for a given size and volume exchange

    Hydrodynamics of Biomimetic Marine Propulsion and Trends in Computational Simulations

    Get PDF
    [Abstract] The aim of the present paper is to provide the state of the works in the field of hydrodynamics and computational simulations to analyze biomimetic marine propulsors. Over the last years, many researchers postulated that some fish movements are more efficient and maneuverable than traditional rotary propellers, and the most relevant marine propulsors which mimic fishes are shown in the present work. Taking into account the complexity and cost of some experimental setups, numerical models offer an efficient, cheap, and fast alternative tool to analyze biomimetic marine propulsors. Besides, numerical models provide information that cannot be obtained using experimental techniques. Since the literature about trends in computational simulations is still scarce, this paper also recalls the hydrodynamics of the swimming modes occurring in fish and summarizes the more relevant lines of investigation of computational models

    Low-power microelectronics embedded in live jellyfish enhance propulsion

    Get PDF
    Artificial control of animal locomotion has the potential to simultaneously address longstanding challenges to actuation, control, and power requirements in soft robotics. Robotic manipulation of locomotion can also address previously inaccessible questions about organismal biology otherwise limited to observations of naturally occurring behaviors. Here, we present a biohybrid robot that uses onboard microelectronics to induce swimming in live jellyfish. Measurements demonstrate that propulsion can be substantially enhanced by driving body contractions at an optimal frequency range faster than natural behavior. Swimming speed can be enhanced nearly threefold, with only a twofold increase in metabolic expenditure of the animal and 10 mW of external power input to the microelectronics. Thus, this biohybrid robot uses 10 to 1000 times less external power per mass than other aquatic robots reported in literature. This capability can expand the performance envelope of biohybrid robots relative to natural animals for applications such as ocean monitoring

    Bioinspired Soft Robotics: state of the art, challenges, and future directions

    Full text link
    Purpose of Review: This review provides an overview of the state of the art in bioinspired soft robotics with by examining advancements in actuation, functionality, modeling, and control. Recent Findings: Recent research into actuation methods, such as artificial muscles, have expanded the functionality and potential use of bioinspired soft robots. Additionally, the application of finite dimensional models has improved computational efficiency for modeling soft continuum systems, and garnered interest as a basis for controller formulation. Summary: Bioinspiration in the field of soft robotics has led to diverse approaches to problems in a range of task spaces. In particular, new capabilities in system simplification, miniaturization, and untethering have each contributed to the field's growth. There is still significant room for improvement in the streamlining of design and manufacturing for these systems, as well as in their control

    Development of Subcarangiform Bionic Robotic Fish Propelled by Shape Memory Alloy Actuators

    Get PDF
    In this paper, a shape memory alloy (SMA) actuated subcarangiform robotic fish has been demonstrated using a spring based propulsion mechanism. The bionic robotic fish developed using SMA spring actuators and light weight 3D printed components can be employed for under water applications. The proposed SMA spring-based design without conventional motor and other rotary actuators was able to achieve two-way shape memory effect and has reproduced the subcarangiform locomotion pattern. The positional kinematic model has been developed and the dynamics of the proposed mechanism were analysed and simulated using Automated Dynamic Analysis of Mechanical Systems (ADAMS). An open loop Arduino-relay based switching control has been adopted to control the periodic actuation of the SMA spring mechanism. The undulation of caudal fin in air and water medium has been analysed. The caudal fin and posterior body of the developed fish prototype have taken part in undulation resembling subcarangiform locomotion pattern and steady swimming was achieved in water with a forward velocity of 24.5 mm/s. The proposed design is scalable, light weight and cost effective which may be suitable for underwater surveillance application

    Oceanic Challenges to Technological Solutions : A Review of Autonomous Underwater Vehicle Path Technologies in Biomimicry, Control, Navigation, and Sensing

    Get PDF
    Autonomous Underwater Vehicles (AUVs) epitomize a revolutionary stride in underwater exploration, seamlessly assuming tasks once exclusive to manned vehicles. Their collaborative prowess within joint missions has inaugurated a new epoch of intricate applications in underwater domains. This study’s primary aim is to scrutinize recent technological advancements in AUVs and their role in navigating the complexities of underwater environments. Through a meticulous review of literature and empirical studies, this review synthesizes recent technological strides, spotlighting developments in biomimicry models, cutting-edge control systems, adaptive navigation algorithms, and pivotal sensor arrays crucial for exploring and mapping the ocean floor. The article meticulously delineates the profound impact of AUVs on underwater robotics, offering a comprehensive panorama of advancements and illustrating their far-reaching implications for underwater exploration and mapping. This review furnishes a holistic comprehension of the current landscape of AUV technology. This condensed overview furnishes a swift comparative analysis, aiding in discerning the focal points of each study while spotlighting gaps and intersections within the existing body of knowledge. It efficiently steers researchers toward complementary sources, enabling a focused examination and judicious allocation of time to the most pertinent studies. Furthermore, it functions as a blueprint for comprehensive studies within the AUV domain, pinpointing areas where amalgamating multiple sources would yield a more comprehensive understanding. By elucidating the purpose, employing a robust methodology, and anticipating comprehensive results, this study endeavors to serve as a cornerstone resource that not only encapsulates recent technological strides but also provides actionable insights and directions for advancing the field of underwater robotics.© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    Design of an Autonomous Swimming Miniature Robot Based on a Novel Concept of Magnetic Actuation

    Get PDF
    Abstract-In this work, we propose a new concept for locomotion of a miniature jellyfish-like robot based on the interaction of mobile permanent magnets. The robot is 35 mm in length and 15 mm in width, and it incorporates a rotary actuator, a magnetic rotor, several elastic magnetic tails and a polymeric body embedding a wireless microcontroller and power supply. The novel magnetic mechanism is very versatile for numerous applications and can be tailored and adapted on the basis of different specifications. An analytical model of the magnetic mechanism allows to shape the robot design based on the specific application. The working principle of the robot together with the design, prototyping and testing phases are illustrated in this paper

    Master of Science

    Get PDF
    thesisThe technologies and processes used in large scale cell bioprocessing, namely the impeller based stirred suspension bioreactor, were designed for the growth of robust and often immortal cell lines to produce protein based therapeutics. The turbulent fluid environment created by such systems was not designed to accommodate the delicate nature of stem cell suspension culture - in particular, to maintain the low shear stress and homogeneity required to retain an undamaged cell and unaltered phenotype. While new bioreactor designs have been developed to address the unique environmental needs of stem cell cultures, industrial volume scale-up is still unavailable. In this work, a novel biomimetic mixing mechanism utilizing a silicone diaphragm and an alternating actuation mechanism has been designed and developed to produce adequate fluid mixing while maintaining a low shear stress environment. The unique design, characterized on a bench-top scale, has been scaled-up over a range of volumes from 100 - 3000 ml. Using particle image velocimetry, the fluid dynamics created by the novel mixing mechanism were qualitatively and quantitatively analyzed. The mixing mechanism produced adequate fluid mixing within the vessel while maintaining mean shear stress levels more than 100 times lower than seen in impeller based spinner flasks. Furthermore, the mixing profile and mean shear stress levels remained well below requirement levels regardless of reactor volume. In conclusion, we have developed a novel mixing system which overcomes shear stress limitations of current stirred suspension reactors in volumes ranging from 100-3000 ml

    Conceptual Framework and Physical Implementation of a Systematic Design Strategy for Tissue-Engineered Devices

    Get PDF
    Tissue-engineered and biologically inspired devices promise to advance medical implants, robotic devices and diagnostic tools. Ideally, biohybrid constructs combine the versatility and fine control of traditional building substrates with dynamic properties of living tissues including sensory modalities and mechanisms of repair, plasticity and self-organization. These dynamic properties also complicate the design process as they arise from, and act upon, structure-function relationships across multiple spatiotemporal scales that need to be recapitulated in the engineered tissue. Biomimetic designs merely copying the structure of native organs and organisms, however, are likely to reflect evolutionary constraints, phenotypic variability and environmental factors rather than rendering optimal engineering solutions. This thesis describes an alternative to biomimetic design, i.e., a systematic approach to tissue engineering based on mechanistic analysis and a focus on functional, not structural, approximation of native and engineered system. As proof of concept, the design, fabrication and evaluation of a tissue-engineered jellyfish medusa with biomimetic propulsion and feeding currents is presented with an emphasis on reasoning and strategy of the iterative design process. A range of experimental and modeling approaches accomplishes mechanistic analysis at multiple scales, control of individual and emergent cell behavior, and quantitative testing of functional performance. The main achievement of this thesis lies in presenting both conceptual framework and physical implementation of a systematic design strategy for muscular pumps and other bioinspired and tissue-engineered applications.</p

    Prototyping and control of a robotic gripper

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáThis paper consists on the design and modelling of a electric-actuated gripper structure, the production and assembly of a prototype with the use of a 3D printer and the development of an control system that limits the force applied by the tool. The final result, despite the motor limitation, allowed a study of the applied force control by manipulating a servo motor positioning
    • …
    corecore