2 research outputs found

    Design and Experimental Evaluation of a Tendon-Driven Minimally Invasive Surgical Robotic Tool with Antagonistic Control

    Get PDF
    The design, implementation and experimental evaluation of a minimally invasive surgical robotic instrument is presented in this article. The tool is constructed using rapid prototyping techniques and each degree-of-freedom is actuated via an antagonistic tendon driven mechanism using servo motors. The accompanying software runs under the Robot Operating System framework. The kinematics of the tool are discussed and the efficiency of the system is investigated in experimental studies, which are showcased in order to assess its potential use in a clinical environment

    Monolithic self-supportive bi-directional bending pneumatic bellows catheter

    Get PDF
    The minimally invasive surgery has proven to be advantageous over conventional open surgery in terms of reduction in recovery time, patient trauma, and overall cost of treatment. To perform a minimally invasive procedure, preliminary insertion of a flexible tube or catheter is crucial without sacrificing its ability to manoeuvre. Nevertheless, despite the vast amount of research reported on catheters, the ability to implement active catheters in the minimally invasive application is still limited. To date, active catheters are made of rigid structures constricted to the use of wires or on-board power supplies for actuation, which increases the risk of damaging the internal organs and tissues. To address this issue, an active catheter made of soft, flexible and biocompatible structure, driven via nonelectric stimulus is of utmost importance. This thesis presents the development of a novel monolithic self-supportive bi-directional bending pneumatic bellows catheter using a sacrificial molding technique. As a proof of concept, in order to understand the effects of structural parameters on the bending performance of a bellows-structured actuator, a single channel circular bellows pneumatic actuator was designed. The finite element analysis was performed in order to analyze the unidirectional bending performance, while the most optimal model was fabricated for experimental validation. Moreover, to attain biocompatibility and bidirectional bending, the novel monolithic polydimethylsiloxane (PDMS)-based dual-channel square bellows pneumatic actuator was proposed. The actuator was designed with an overall cross-sectional area of 5 x 5 mm2, while the input sequence and the number of bellows were characterized to identify their effects on the bending performance. A novel sacrificial molding technique was adopted for developing the monolithic-structured actuator, which enabled simple fabrication for complex designs. The experimental validation revealed that the actuator model with a size of5 x 5 x 68.4 mm3 i.e. having the highest number of bellows, attained optimal bi-directional bending with maximum angles of -65° and 75°, and force of 0.166 and 0.221 N under left and right channel actuation, respectively, at 100 kPa pressure. The bending performance characterization and thermal insusceptibility achieved by the developed pneumatic catheter presents a promising implementation of flexibility and thermal stability for various biomedical applications, such as dialysis and cardiac catheterization
    corecore