4 research outputs found

    Integration of network coding, spatial diversity and opportunistic routing/forwarding in wireless mesh networks

    Get PDF
    Wireless Mesh Network is an answer to the last mile problem. It offers easy deployment and provides coverage over large area with fewer wires. Nevertheless, its limited throughput is inadequate for next generation applications. Motivated by its features and advantages, we propose a solution to mitigate this problem of limited throughput by leveraging the broadcast nature of the wireless medium. In particular, network coding, spatial diversity and opportunistic routing/forwarding capitalize on the broadcast nature of the wireless links to improve the network performance. These techniques target different network conditions and usually are considered in separation. In this thesis a cross-layer based integration of the mentioned three techniques is presented to accumulate their potential gains using the same network protocol stack in wireless mesh networks. The proposed integration approach is based on a new CDARM metric (Coding opportunity and Data rate Aware Routing Metric) used for the route selection and a method for creating relay links at the MAC layer. In particular to leverage on the broadcast nature we developed a cooperative protocol, based on link creation at the MAC layer that introduces opportunism into the cooperative protocol. Based on this cooperative protocol and the routing metric, we integrate the network coding mechanism. Then we introduce cooperation between the network and MAC layers. The numerical study, based on the system level simulation results, shows significant improvement of the integrated protocol performance in terms of network throughput and reliability over the individual mechanisms. To the best of our knowledge this dissertation is the first attempt to integrate network coding, spatial diversity and opportunistic routing/forwarding mechanisms in the same protocol stack. The integrated protocol requires modifications into the network protocol stack that can be easily incorporated in future generation devices

    Design and evaluation of random linear network coding Accelerators on FPGAs

    No full text

    Design and evaluation of random linear network coding Accelerators on FPGAs

    No full text
    corecore