3,761 research outputs found

    Dancing to the Partisan Beat: A First Analysis of Political Communication on TikTok

    Full text link
    TikTok is a video-sharing social networking service, whose popularity is increasing rapidly. It was the world's second-most downloaded app in 2019. Although the platform is known for having users posting videos of themselves dancing, lip-syncing, or showcasing other talents, user-videos expressing political views have seen a recent spurt. This study aims to perform a primary evaluation of political communication on TikTok. We collect a set of US partisan Republican and Democratic videos to investigate how users communicated with each other about political issues. With the help of computer vision, natural language processing, and statistical tools, we illustrate that political communication on TikTok is much more interactive in comparison to other social media platforms, with users combining multiple information channels to spread their messages. We show that political communication takes place in the form of communication trees since users generate branches of responses to existing content. In terms of user demographics, we find that users belonging to both the US parties are young and behave similarly on the platform. However, Republican users generated more political content and their videos received more responses; on the other hand, Democratic users engaged significantly more in cross-partisan discussions.Comment: Accepted as a full paper at the 12th International ACM Web Science Conference (WebSci 2020). Please cite the WebSci version; Second version includes corrected typo

    Language in Our Time: An Empirical Analysis of Hashtags

    Get PDF
    Hashtags in online social networks have gained tremendous popularity during the past five years. The resulting large quantity of data has provided a new lens into modern society. Previously, researchers mainly rely on data collected from Twitter to study either a certain type of hashtags or a certain property of hashtags. In this paper, we perform the first large-scale empirical analysis of hashtags shared on Instagram, the major platform for hashtag-sharing. We study hashtags from three different dimensions including the temporal-spatial dimension, the semantic dimension, and the social dimension. Extensive experiments performed on three large-scale datasets with more than 7 million hashtags in total provide a series of interesting observations. First, we show that the temporal patterns of hashtags can be categorized into four different clusters, and people tend to share fewer hashtags at certain places and more hashtags at others. Second, we observe that a non-negligible proportion of hashtags exhibit large semantic displacement. We demonstrate hashtags that are more uniformly shared among users, as quantified by the proposed hashtag entropy, are less prone to semantic displacement. In the end, we propose a bipartite graph embedding model to summarize users' hashtag profiles, and rely on these profiles to perform friendship prediction. Evaluation results show that our approach achieves an effective prediction with AUC (area under the ROC curve) above 0.8 which demonstrates the strong social signals possessed in hashtags.Comment: WWW 201

    #Bieber + #Blast = #BieberBlast: Early Prediction of Popular Hashtag Compounds

    Full text link
    Compounding of natural language units is a very common phenomena. In this paper, we show, for the first time, that Twitter hashtags which, could be considered as correlates of such linguistic units, undergo compounding. We identify reasons for this compounding and propose a prediction model that can identify with 77.07% accuracy if a pair of hashtags compounding in the near future (i.e., 2 months after compounding) shall become popular. At longer times T = 6, 10 months the accuracies are 77.52% and 79.13% respectively. This technique has strong implications to trending hashtag recommendation since newly formed hashtag compounds can be recommended early, even before the compounding has taken place. Further, humans can predict compounds with an overall accuracy of only 48.7% (treated as baseline). Notably, while humans can discriminate the relatively easier cases, the automatic framework is successful in classifying the relatively harder cases.Comment: 14 pages, 4 figures, 9 tables, published in CSCW (Computer-Supported Cooperative Work and Social Computing) 2016. in Proceedings of 19th ACM conference on Computer-Supported Cooperative Work and Social Computing (CSCW 2016
    corecore