2,584 research outputs found

    Magneto-Rheological Actuators for Human-Safe Robots: Modeling, Control, and Implementation

    Get PDF
    In recent years, research on physical human-robot interaction has received considerable attention. Research on this subject has led to the study of new control and actuation mechanisms for robots in order to achieve intrinsic safety. Naturally, intrinsic safety is only achievable in kinematic structures that exhibit low output impedance. Existing solutions for reducing impedance are commonly obtained at the expense of reduced performance, or significant increase in mechanical complexity. Achieving high performance while guaranteeing safety seems to be a challenging goal that necessitates new actuation technologies in future generations of human-safe robots. In this study, a novel two degrees-of-freedom safe manipulator is presented. The manipulator uses magneto-rheological fluid-based actuators. Magneto-rheological actuators offer low inertia-to-torque and mass-to-torque ratios which support their applications in human-friendly actuation. As a key element in the design of the manipulator, bi-directional actuation is attained by antagonistically coupling MR actuators at the joints. Antagonistically coupled MR actuators at the joints allow using a single motor to drive multiple joints. The motor is located at the base of the manipulator in order to further reduce the overall weight of the robot. Due to the unique characteristic of MR actuators, intrinsically safe actuation is achieved without compromising high quality actuation. Despite these advantages, modeling and control of MR actuators present some challenges. The antagonistic configuration of MR actuators may result in limit cycles in some cases when the actuator operates in the position control loop. To study the possibility of limit cycles, describing function method is employed to obtain the conditions under which limit cycles may occur in the operation of the system. Moreover, a connection between the amplitude and the frequency of the potential limit cycles and the system parameters is established to provide an insight into the design of the actuator as well as the controller. MR actuators require magnetic fields to control their output torques. The application of magnetic field however introduces hysteresis in the behaviors of MR actuators. To this effect, an adaptive model is developed to estimate the hysteretic behavior of the actuator. The effectiveness of the model is evaluated by comparing its results with those obtained using the Preisach model. These results are then extended to an adaptive control scheme in order to compensate for the effect of hysteresis. In both modeling and control, stability of proposed schemes are evaluated using Lyapunov method, and the effectiveness of the proposed methods are validated with experimental results

    Encoderless position control of a two-link robot manipulator

    Get PDF

    Modeling and Control of the Automated Radiator Inspection Device

    Get PDF
    Many of the operations performed at the Kennedy Space Center (KSC) are dangerous and repetitive tasks which make them ideal candidates for robotic applications. For one specific application, KSC is currently in the process of designing and constructing a robot called the Automated Radiator Inspection Device (ARID), to inspect the radiator panels on the orbiter. The following aspects of the ARID project are discussed: modeling of the ARID; design of control algorithms; and nonlinear based simulation of the ARID. Recommendations to assist KSC personnel in the successful completion of the ARID project are given

    Hybrid Magneto-Rheological Actuators for Human Friendly Robotic Manipulators

    Get PDF
    In recent years, many developments in the field of the physical human robot interaction (pHRI) have been witnessed and significant attentions have been given to the subject of safety within the interactive environments. Ensuring the safety has led to the design of the robots that are physically unable to hurt humans. However, Such systems commonly suffer from the safety-performance trade-off. Magneto-Rheological (MR) fluids are a special class of fluids that exhibit variable yield stress with respect to an applied magnetic field. Devices developed with such fluids are known to provide the prerequisite requirements of intrinsic safe actuation while maintaining the dynamical performance of the actuator. In this study, a new concept for generating magnetic field in Magneto-Rheological (MR) clutches is presented. The main rationale behind this concept is to divide the magnetic field generation into two parts using an electromagnetic coil and a permanent magnet. The main rationale behind this concept is to utilize a hybrid combination of electromagnetic coil and a permanent magnet. The combination of permanent magnets and electromagnetic coils in Hybrid Magneto-Rheological (HMR) clutches allows to distribute the magnetic field inside an MR clutch more uniformly. Moreover, The use of a permanent magnet dramatically reduces the mass of MR clutches for a given value of the nominal torque that results in developing higher torque-to-mass ratio. High torque-to-mass and torque-to-inertia ratios in HMR clutches promotes the use of these devices in human-friendly actuation

    Human-friendly robotic manipulators: safety and performance issues in controller design

    Get PDF
    Recent advances in robotics have spurred its adoption into new application areas such as medical, rescue, transportation, logistics, personal care and entertainment. In the personal care domain, robots are expected to operate in human-present environments and provide non-critical assistance. Successful and flourishing deployment of such robots present different opportunities as well as challenges. Under a national research project, Bobbie, this dissertation analyzes challenges associated with these robots and proposes solutions for identified problems. The thesis begins by highlighting the important safety concern and presenting a comprehensive overview of safety issues in a typical domestic robot system. By using functional safety concept, the overall safety of the complex robotic system was analyzed through subsystem level safety issues. Safety regions in the world model of the perception subsystem, dependable understanding of the unstructured environment via fusion of sensory subsystems, lightweight and compliant design of mechanical components, passivity based control system and quantitative metrics used to assert safety are some important points discussed in the safety review. The main research focus of this work is on controller design of robotic manipulators against two conflicting requirements: motion performance and safety. Human-friendly manipulators used on domestic robots exhibit a lightweight design and demand a stable operation with a compliant behavior injected via a passivity based impedance controller. Effective motion based manipulation using such a controller requires a highly stiff behavior while important safety requirements are achieved with compliant behaviors. On the basis of this intuitive observation, this research identifies suitable metrics to identify the appropriate impedance for a given performance and safety requirement. This thesis also introduces a domestic robot design that adopts a modular design approach to minimize complexity, cost and development time. On the basis of functional modularity concept where each module has a unique functional contribution in the system, the robot “Bobbie-UT‿ is built as an interconnection of interchangeable mobile platform, torso, robotic arm and humanoid head components. Implementation of necessary functional and safety requirements, design of interfaces and development of suitable software architecture are also discussed with the design

    Actuation and stiffening in fluid-driven soft robots using low-melting-point material

    Get PDF
    Soft material robots offer a number of advantages over traditional rigid robots in applications including humanrobot interaction, rehabilitation and surgery. These robots can navigate around obstacles, elongate, squeeze through narrow openings or be squeezed - and they are considered to be inherently safe. The ability to stiffen compliant soft actuators has been achieved by embedding various mechanisms that are generally decoupled from the actuation principle. Miniaturisation becomes challenging due to space limitations which can in turn result in diminution of stiffening effects. Here, we propose to hydraulically actuate soft manipulators with lowmelting- point material and, at the same time, be able to switch between a soft and stiff state. Instead of allocating an additional stiffening chamber within the soft robot, one chamber only is used for actuation and stiffening. Low Melting Point Alloy is integrated into the actuation chamber of a single-compartment soft robotic manipulator and the interfaced robotic syringe pump. Temperature change is enabled through embedded nichrome wires. Our experimental results show higher stiffness factors, from 9-12 opposing the motion of curvature, than those previously found for jamming mechanisms incorporated in separate additional chambers, in the range of 2-8 for the same motion

    Actuation and stiffening in fluid-driven soft robots using low-melting-point material

    Get PDF
    Soft material robots offer a number of advantages over traditional rigid robots in applications including human-robot interaction, rehabilitation and surgery. These robots can navigate around obstacles, elongate, squeeze through narrow openings or be squeezed - and they are considered to be inherently safe. The ability to stiffen compliant soft actuators has been achieved by embedding various mechanisms that are generally decoupled from the actuation principle. Miniaturisation becomes challenging due to space limitations which can in turn result in diminution of stiffening effects. Here, we propose to hydraulically actuate soft manipulators with low-melting-point material and, at the same time, be able to switch between a soft and stiff state. Instead of allocating an additional stiffening chamber within the soft robot, one chamber only is used for actuation and stiffening. Low Melting Point Alloy is integrated into the actuation chamber of a single-compartment soft robotic manipulator and the interfaced robotic syringe pump. Temperature change is enabled through embedded nichrome wires. Our experimental results show higher stiffness factors, from 9-12 opposing the motion of curvature, than those previously found for jamming mechanisms incorporated in separate additional chambers, in the range of 2-8 for the same motion

    SDIO robotics in space applications

    Get PDF
    Robotics in space supporting the Strategic Defense System (SDS) program is discussed. Ongoing initiatives which are intended to establish an initial Robotics in Space capability are addressed. This is specifically being referred to as the Satellite Servicing System (SSS). This system is based on the NASA Orbital Maneuvering Vehicle (OMV) with a Robotic Manipulator(s) based on the NASA Flight Telerobotic Servicer (FTS) and other SSS equipment required to do the satellite servicing work attached to the OMV. Specific Robotics in Space Requirements which have resulted from the completion of the Robotics Requirements Study Contract are addressed
    • …
    corecore