6,357 research outputs found

    2011 IEEE Vehicular Networking Conference (VNC): Demo Summaries

    Get PDF
    Foreword For the first time in its history, IEEE VNC has included this year’s demonstrations in its program. Demonstrations play an important role to expose the research community to practical aspects of research and to foster cross-fertilization among researchers both in academia and in industry. Demonstrations of vehicular communication system solutions are considered very challenging, especially due to space constraints of conference venues. In its inaugural appearance, the contrib- utors of this demonstration session took this challenge to the heart and managed to showcase their implementation work with both hands-on expositions and with recordings of larger scale outdoor testbeds. With topics ranging from applications to communication challenges, we hope that this demonstration session of IEEE VNC 2011 will spark new and interesting discussions. Eylem Ekici Demo Chai

    Platoon Stability and Safety Analysis of Cooperative Adaptive Cruise Control under Wireless Rician Fading Channels and Jamming Attacks

    Full text link
    Cooperative Adaptive Cruise Control (CACC) is considered as a key enabling technology to automatically regulate the inter-vehicle distances in a vehicle platoon to improve traffic efficiency while maintaining safety. Although the wireless communication and physical processes in the existing CACC systems are integrated in one control framework, the coupling between wireless communication reliability and system states is not well modeled. Furthermore, the research on the impact of jamming attacks on the system stability and safety is largely open. In this paper, we conduct a comprehensive analysis on the stability and safety of the platoon under the wireless Rician fading channel model and jamming attacks. The effect of Rician fading and jamming on the communication reliability is incorporated in the modeling of string dynamics such that it captures its state dependency. Time-domain definition of string stability is utilized to delineate the impact of Rician fading and jamming on the CACC system's functionality and string stability. Attacker's possible locations at which it can destabilize the string is further studied based on the proposed model. From the safety perspective, reachable states (i.e., inter-vehicle distances) of the CACC system under unreliable wireless fading channels and jamming attacks is studied. Safety verification is investigated by examining the inter-vehicle distance trajectories. We propose a methodology to compute the upper and lower bounds of the trajectories of inter-vehicle distances between the lead vehicle and its follower. We conduct extensive simulations to evaluate the system stability and safety under jamming attacks in different scenarios. We identify that channel fading can degrade the performance of the CACC system, and the platoon's safety is highly sensitive to jamming attacks.Comment: Due to the character limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing above is slightly shorter than the one in the main PDF fil

    A Roadmap Towards Resilient Internet of Things for Cyber-Physical Systems

    Full text link
    The Internet of Things (IoT) is a ubiquitous system connecting many different devices - the things - which can be accessed from the distance. The cyber-physical systems (CPS) monitor and control the things from the distance. As a result, the concepts of dependability and security get deeply intertwined. The increasing level of dynamicity, heterogeneity, and complexity adds to the system's vulnerability, and challenges its ability to react to faults. This paper summarizes state-of-the-art of existing work on anomaly detection, fault-tolerance and self-healing, and adds a number of other methods applicable to achieve resilience in an IoT. We particularly focus on non-intrusive methods ensuring data integrity in the network. Furthermore, this paper presents the main challenges in building a resilient IoT for CPS which is crucial in the era of smart CPS with enhanced connectivity (an excellent example of such a system is connected autonomous vehicles). It further summarizes our solutions, work-in-progress and future work to this topic to enable "Trustworthy IoT for CPS". Finally, this framework is illustrated on a selected use case: A smart sensor infrastructure in the transport domain.Comment: preprint (2018-10-29

    Energy and Information Management of Electric Vehicular Network: A Survey

    Full text link
    The connected vehicle paradigm empowers vehicles with the capability to communicate with neighboring vehicles and infrastructure, shifting the role of vehicles from a transportation tool to an intelligent service platform. Meanwhile, the transportation electrification pushes forward the electric vehicle (EV) commercialization to reduce the greenhouse gas emission by petroleum combustion. The unstoppable trends of connected vehicle and EVs transform the traditional vehicular system to an electric vehicular network (EVN), a clean, mobile, and safe system. However, due to the mobility and heterogeneity of the EVN, improper management of the network could result in charging overload and data congestion. Thus, energy and information management of the EVN should be carefully studied. In this paper, we provide a comprehensive survey on the deployment and management of EVN considering all three aspects of energy flow, data communication, and computation. We first introduce the management framework of EVN. Then, research works on the EV aggregator (AG) deployment are reviewed to provide energy and information infrastructure for the EVN. Based on the deployed AGs, we present the research work review on EV scheduling that includes both charging and vehicle-to-grid (V2G) scheduling. Moreover, related works on information communication and computing are surveyed under each scenario. Finally, we discuss open research issues in the EVN

    Fog Computing in IoT Aided Smart Grid Transition- Requirements, Prospects, Status Quos and Challenges

    Full text link
    Due to unfolded developments in both the IT sectors viz. Intelligent Transportation and Information Technology contemporary Smart Grid (SG) systems are leveraged with smart devices and entities. Such infrastructures when bestowed with the Internet of Things (IoT) and sensor network make a universe of objects active and online. The traditional cloud deployment succumbs to meet the analytics and computational exigencies decentralized, dynamic cum resource-time critical SG ecosystems. This paper synoptically inspects to what extent the cloud computing utilities can satisfy the mission-critical requirements of SG ecosystems and which subdomains and services call for fog based computing archetypes. The objective of this work is to comprehend the applicability of fog computing algorithms to interplay with the core centered cloud computing support, thus enabling to come up with a new breed of real-time and latency free SG services. The work also highlights the opportunities brought by fog based SG deployments. Correspondingly, we also highlight the challenges and research thrusts elucidated towards the viability of fog computing for successful SG Transition.Comment: 13 Pages, 1 table, 1 Figur

    Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges and Opportunities

    Full text link
    The ever-increasing mobile data demands have posed significant challenges in the current radio access networks, while the emerging computation-heavy Internet of things (IoT) applications with varied requirements demand more flexibility and resilience from the cloud/edge computing architecture. In this article, to address the issues, we propose a novel air-ground integrated mobile edge network (AGMEN), where UAVs are flexibly deployed and scheduled, and assist the communication, caching, and computing of the edge network. In specific, we present the detailed architecture of AGMEN, and investigate the benefits and application scenarios of drone-cells, and UAV-assisted edge caching and computing. Furthermore, the challenging issues in AGMEN are discussed, and potential research directions are highlighted.Comment: Accepted by IEEE Communications Magazine. 5 figure

    Differential Privacy Techniques for Cyber Physical Systems: A Survey

    Full text link
    Modern cyber physical systems (CPSs) has widely being used in our daily lives because of development of information and communication technologies (ICT).With the provision of CPSs, the security and privacy threats associated to these systems are also increasing. Passive attacks are being used by intruders to get access to private information of CPSs. In order to make CPSs data more secure, certain privacy preservation strategies such as encryption, and k-anonymity have been presented in the past. However, with the advances in CPSs architecture, these techniques also needs certain modifications. Meanwhile, differential privacy emerged as an efficient technique to protect CPSs data privacy. In this paper, we present a comprehensive survey of differential privacy techniques for CPSs. In particular, we survey the application and implementation of differential privacy in four major applications of CPSs named as energy systems, transportation systems, healthcare and medical systems, and industrial Internet of things (IIoT). Furthermore, we present open issues, challenges, and future research direction for differential privacy techniques for CPSs. This survey can serve as basis for the development of modern differential privacy techniques to address various problems and data privacy scenarios of CPSs.Comment: 46 pages, 12 figure

    Real-Time Simulation in Real-Time Systems: Current Status, Research Challenges and A Way Forward

    Full text link
    Simulation especially real-time simulation have been widely used for the design and testing of real-time systems. The advancement of simulation tools has largely attributed to the evolution of computing technologies. With the reduced cost and dramatically improved performance, researchers and industry engineers are able to access variety of effective and highly performing simulation tools. This chapter describes the definition and importance of real-time simulation for real-time systems. Moreover, the chapter also points out the challenges met in real-time simulation and walks through some promising research progress in addressing some of the challenges

    Applications of Deep Reinforcement Learning in Communications and Networking: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.Comment: 37 pages, 13 figures, 6 tables, 174 reference paper

    State-of-the-Art Survey on In-Vehicle Network Communication (CAN-Bus) Security and Vulnerabilities

    Full text link
    Nowadays with the help of advanced technology, modern vehicles are not only made up of mechanical devices but also consist of highly complex electronic devices and connections to the outside world. There are around 70 Electronic Control Units (ECUs) in modern vehicle which are communicating with each other over the standard communication protocol known as Controller Area Network (CAN-Bus) that provides the communication rate up to 1Mbps. There are different types of in-vehicle network protocol and bus system namely Controlled Area Network (CAN), Local Interconnected Network (LIN), Media Oriented System Transport (MOST), and FlexRay. Even though CAN-Bus is considered as de-facto standard for in-vehicle network communication, it inherently lacks the fundamental security features by design like message authentication. This security limitation has paved the way for adversaries to penetrate into the vehicle network and do malicious activities which can pose a dangerous situation for both driver and passengers. In particular, nowadays vehicular networks are not only closed systems, but also they are open to different external interfaces namely Bluetooth, GPS, to the outside world. Therefore, it creates new opportunities for attackers to remotely take full control of the vehicle. The objective of this research is to survey the current limitations of CAN-Bus protocol in terms of secure communication and different solutions that researchers in the society of automotive have provided to overcome the CAN-Bus limitation on different layers
    • …
    corecore