579 research outputs found

    Twenty-five years of sensor array and multichannel signal processing: a review of progress to date and potential research directions

    Get PDF
    In this article, a general introduction to the area of sensor array and multichannel signal processing is provided, including associated activities of the IEEE Signal Processing Society (SPS) Sensor Array and Multichannel (SAM) Technical Committee (TC). The main technological advances in five SAM subareas made in the past 25 years are then presented in detail, including beamforming, direction-of-arrival (DOA) estimation, sensor location optimization, target/source localization based on sensor arrays, and multiple-input multiple-output (MIMO) arrays. Six recent developments are also provided at the end to indicate possible promising directions for future SAM research, which are graph signal processing (GSP) for sensor networks; tensor-based array signal processing, quaternion-valued array signal processing, 1-bit and noncoherent sensor array signal processing, machine learning and artificial intelligence (AI) for sensor arrays; and array signal processing for next-generation communication systems

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Polarimetric airborne scientific instrument, mark 2, an ice‐sounding airborne synthetic aperture radar for subglacial 3D imagery

    Get PDF
    Polarimetric Airborne Scientific INstrument, mark 2 (PASIN2) is a 150 MHz coherent pulsed radar with the purpose of deep ice sounding for bedrock, subglacial channels and ice-water interface detection in Antarctica. It is designed and operated by the British Antarctic Survey from 2014. With multiple antennas, oriented along and across-track, for transmission and reception, it enables polarimetric 3D estimation of the ice base with a single pass, reducing the gridding density of the survey paths. The off-line data processing stream consists of channel calibration; 2D synthetic aperture radar (SAR) imaging based on back-projection, for along-track and range dimensions; and finally, a direction of arrival estimation (DoA) of the remaining across-track angle, by modifying the non-linear MUSIC algorithm. Calibration flights, during the Antarctic Summer campaigns in 16/17 and 19/20 seasons, assessed and validated the instrument and processing performances. Imaging flights over ice streams and ice shelves close to grounding lines demonstrate the 3D sensing capabilities. By resolving directional ambiguities and accounting for reflector across-track location, the true ice thickness and bed elevation are obtained, thereby removing the error of the usual assumption of vertical DoA, that greatly influence the output of flow models of ice dynamics

    Integration of hybrid networks, AI, Ultra Massive-MIMO, THz frequency, and FBMC modulation toward 6g requirements : A Review

    Get PDF
    The fifth-generation (5G) wireless communications have been deployed in many countries with the following features: wireless networks at 20 Gbps as peak data rate, a latency of 1-ms, reliability of 99.999%, maximum mobility of 500 km/h, a bandwidth of 1-GHz, and a capacity of 106 up to Mbps/m2. Nonetheless, the rapid growth of applications, such as extended/virtual reality (XR/VR), online gaming, telemedicine, cloud computing, smart cities, the Internet of Everything (IoE), and others, demand lower latency, higher data rates, ubiquitous coverage, and better reliability. These higher requirements are the main problems that have challenged 5G while concurrently encouraging researchers and practitioners to introduce viable solutions. In this review paper, the sixth-generation (6G) technology could solve the 5G limitations, achieve higher requirements, and support future applications. The integration of multiple access techniques, terahertz (THz), visible light communications (VLC), ultra-massive multiple-input multiple-output ( ÎŒm -MIMO), hybrid networks, cell-free massive MIMO, and artificial intelligence (AI)/machine learning (ML) have been proposed for 6G. The main contributions of this paper are a comprehensive review of the 6G vision, KPIs (key performance indicators), and advanced potential technologies proposed with operation principles. Besides, this paper reviewed multiple access and modulation techniques, concentrating on Filter-Bank Multicarrier (FBMC) as a potential technology for 6G. This paper ends by discussing potential applications with challenges and lessons identified from prior studies to pave the path for future research

    Rate-splitting multiple access for non-terrestrial communication and sensing networks

    Get PDF
    Rate-splitting multiple access (RSMA) has emerged as a powerful and flexible non-orthogonal transmission, multiple access (MA) and interference management scheme for future wireless networks. This thesis is concerned with the application of RSMA to non-terrestrial communication and sensing networks. Various scenarios and algorithms are presented and evaluated. First, we investigate a novel multigroup/multibeam multicast beamforming strategy based on RSMA in both terrestrial multigroup multicast and multibeam satellite systems with imperfect channel state information at the transmitter (CSIT). The max-min fairness (MMF)-degree of freedom (DoF) of RSMA is derived and shown to provide gains compared with the conventional strategy. The MMF beamforming optimization problem is formulated and solved using the weighted minimum mean square error (WMMSE) algorithm. Physical layer design and link-level simulations are also investigated. RSMA is demonstrated to be very promising for multigroup multicast and multibeam satellite systems taking into account CSIT uncertainty and practical challenges in multibeam satellite systems. Next, we extend the scope of research from multibeam satellite systems to satellite- terrestrial integrated networks (STINs). Two RSMA-based STIN schemes are investigated, namely the coordinated scheme relying on CSI sharing and the co- operative scheme relying on CSI and data sharing. Joint beamforming algorithms are proposed based on the successive convex approximation (SCA) approach to optimize the beamforming to achieve MMF amongst all users. The effectiveness and robustness of the proposed RSMA schemes for STINs are demonstrated. Finally, we consider RSMA for a multi-antenna integrated sensing and communications (ISAC) system, which simultaneously serves multiple communication users and estimates the parameters of a moving target. Simulation results demonstrate that RSMA is beneficial to both terrestrial and multibeam satellite ISAC systems by evaluating the trade-off between communication MMF rate and sensing Cramer-Rao bound (CRB).Open Acces

    Polarimetric airborne scientific instrument, mark 2, an ice‐sounding airborne synthetic aperture radar for subglacial 3D imagery

    Get PDF
    Polarimetric Airborne Scientific INstrument, mark 2 (PASIN2) is a 150 MHz coherent pulsed radar with the purpose of deep ice sounding for bedrock, subglacial channels and ice‐water interface detection in Antarctica. It is designed and operated by the British Antarctic Survey from 2014. With multiple antennas, oriented along and across‐track, for transmission and reception, it enables polarimetric 3D estimation of the ice base with a single pass, reducing the gridding density of the survey paths. The off‐line data processing stream consists of channel calibration; 2D synthetic aperture radar (SAR) imaging based on back‐projection, for along‐track and range dimensions; and finally, a direction of arrival estimation (DoA) of the remaining across‐track angle, by modifying the non‐linear MUSIC algorithm. Calibration flights, during the Antarctic Summer campaigns in 16/17 and 19/20 seasons, assessed and validated the instrument and processing performances. Imaging flights over ice streams and ice shelves close to grounding lines demonstrate the 3D sensing capabilities. By resolving directional ambiguities and accounting for reflector across‐track location, the true ice thickness and bed elevation are obtained, thereby removing the error of the usual assumption of vertical DoA, that greatly influence the output of flow models of ice dynamics

    Bluff-body aerodynamics and transfer functions for non-catching precipitation measurement instruments.

    Get PDF
    Starting from the old and trivial technique of using a graduated cylinder to collect and manually measure precipitation, numerous advances were made for in-situ precipitation gauges. After decades of scarce innovation, a new family of in-situ precipitation gauges was developed. They are called Non-Catching Gauges (NCG) since they can measure precipitation and its microphysical and dynamic characteristics without the need to collect hydrometeors. The attention that NCGs are gathering today is quite notable, even if they represent only a small fraction of the total precipitation gauges deployed. Their use in the field is bound to continuously grow in time, due to several advantages, discussed in this work, that such instruments present over more traditional ones. However, their major disadvantage is their increased complexity, the effects of which are highlighted by the literature through evidence of calibration and correction issues. Various field intercomparison experiments showed the evidence of significant biases in NCGs measurements. The goal of this work is to investigate two main sources of bias, producing the largest impact on precipitation measurements. The first source of bias evaluated in this work is due to instrument calibration. Several attempts at developing a calibration procedure are presented both in the scientific literature and from the manufacturers. Nevertheless, those methods are hardly traceable to international standards and, in most cases, lack a suitable reference measure to compare against the instrumental output. In this work, a fully traceable calibration procedure is proposed, in analogy with the one already existing for catching type gauges. This requires drops of know diameter and fall velocity to be released over the instrument sensing area. For this reason, the Calibrated Rainfall Generator (CRG) is developed, able to release single drops on demand and measure them independently just before they reach the instrument sensing area. Detachment of drops is obtained by using an electrostatic system, while the measure of their diameter and fall velocity is performed by means of a photogrammetric approach. The Thies Laser Precipitation Monitor (LPM) was tested using the CRG considering two different output telegrams. The first one provides the raw measure of each drop sensed by the instrument while the second one provides the Particle Size and fall Velocity Distribution (PSVD) matrix. Both telegrams show a tendency to underestimate the drop diameter that increases with decreasing the drop size, while errors in the fall velocity measurements have a less definite trend. Furthermore, tests also show a large standard deviation of the measurements, significantly higher than the one of the reference measurements. The underestimation of drop size and fall velocity is also reflected into the RI measurements provided by the instrument, with a resulting underestimation that decreases with increasing the precipitation intensity. The difference between the two telegrams considered is large and may only be explained by differences in the instrument internal processing for the two telegrams. The second instrument tested using the CRG is the Biral VPF-750, a light scatter gauge. Results show a tendency to underestimate both the drop diameter and fall velocity. In the first case, the error decreases with increasing the drops size, similarly to the Thies LPM. However, the error in the fall velocity is considerably higher and instead increases with increasing the drop sizes. In terms of Rainfall Intensity (RI), the instrument shows a strong underestimation that, due to the opposite trend observed for drop diameter and fall velocity, is almost constant with the precipitation intensity. Both instruments show significant biases, corroborated by field intercomparison results from the literature, that is often larger than 10% for the investigated variables. This means that both gauges cannot be classified according to the guidelines proposed in this work for the development of a standard calibration procedure, derived from those already existing for CGs. The second source of bias is wind, a well-established source of environmental error for traditional Catching-type Gauges (CG) but also affecting NCGs. The wind-induced bias is investigated using a numerical approach, combining Computational Fluid Dynamics (CFD) and Lagrangian Particle Tracking (LPT) models. Two different CFD models were tested, the first providing a time-independent steady state solution, while the other is fully time-dependent. Both were compared against wind tunnel results, showing a good agreement with the experimental data, and proving their ability to capture the complex aerodynamic response of instruments when impacted by the wind. The Thies Laser Precipitation Monitor (LPM) is first chosen as a test instrument, being representative of the typical NCGs that are currently deployed in the field. CFD simulations show that wind direction is the primary factor determining the aerodynamic disturbance close to the instrument sensing area. Similar results were found for the OTT Parsivel2, that is another widely diffused NCG. For wind flow parallel to the laser beam, strong disturbance close to the gauge sensing area is observed. Meanwhile, wind coming perpendicular to the laser beam produces minimal flow disturbance. The wind-induced bias is also investigated for the Vaisala WXT-520, an impact disdrometer. This gauge is smaller ad has a more regular shape if compared to the optical disdrometers, but its measuring principle is based on the detection of the drop kinetic energy, while the size and fall velocity are indirectly obtained. CFD simulations show limited disturbance close to the sensing area of the instrument and a negligeable dependency on the wind direction (due to a more radially symmetric geometry). The instrument body further provide minimal shielding of the sensing area. Strong updraft however occurs upstream of the instrument for all wind directions, significantly affecting the fall velocity of the smaller and lighter drops. Using these results, three different LPT models are also tested. The first is an uncoupled model based on the time-independent CFD results and is used to evaluate the instrument performance for all wind speeds and directions considered. The other two models, due to their high computational requirements, are applied only to a selected number of combinations of wind speed and direction for the Thies LPM. Results show a good agreement and allow concluding that the significant increase in computational burden of the latter two models does not significantly improve the accuracy of the results. However, the one-way coupled model highlights the role of turbulence, that may have a significant impact on the instrumental performance when strong recirculation is present near its sensing area. In the case of the two other gauges, only the uncoupled LPT model in combination with the time-independent CFD model is used, this being the best compromise between numerical accuracy and computational cost. Results of the LPT model are presented in terms of variation in the retrieval of precipitation microphysical properties, Catch Ratios (CR), Collection Efficiency (CE) and Radar Retrieval Efficiency (RRE). For the three gauges considered, it is shown that smaller hydrometeors fall velocity close to the instrument sensing area is strongly affected by wind and is – in general – reduced. A significant wind-induced bias is also evident in the Drop Size Distribution (DSD) measured by the gauges. Optical gauges may report a significant lower number of small hydrometeors even at moderate wind speed. Due to the gauge body partially shielding the sensing area. Impact gauge DSD is also strongly influenced by wind, since hydrometeors with high kinetic energy are sensed as having a large diameter. The DSD is therefore shifted towards larger diameters and the instrument tends to overestimate the number of hydrometeors of all sizes. This suggests that the different shapes of the DSD function reported in the field by different instruments may be due, at least partially, to wind-induced biases. In terms of integral precipitation characteristics, the wind direction is the primary factor in determining the performance of optical gauges in windy conditions. For wind parallel to the laser beam, the instrument senses less and less precipitation with increasing the wind speed, with no hydrometeors even reaching the sensing area in some configurations . On the other hand, when the wind is perpendicular to the laser beam, the instrument performs similarly for all wind speeds, with CR and CE values close to one and only a moderate amount of overcatch being observed at high wind speed. Only for the OTT Parsivel2 a non negligeable overcatch is also evident for wind coming at a 45° angle with respect to the beam direction. For the Vaisala WXT-520 the Kinetic Catch Ratio (KCR) and Kinetic Collection Efficiency (KCE) are defined as substitutes for the CR and CE. At low wind speed, the KCR is below unity, due to the reduction in fall velocity produced by the updraft. However, with increasing wind speed, the kinetic energy of hydrometeors carried by wind increases considerably, overcoming the reduction caused by the updraft close to the gauge. For this reason, KCR values becomes much higher than unity, especially for small size hydrometeors. The increase in kinetic energy is reflected into increased KCE values, that are close to unity at low wind speed, but rapidly grow with increasing the wind speed. Wind direction has instead very limited influence on the measurements. In terms of RRE, optical gauges present limited bias for all combinations of wind speed and direction, except for the highest wind speed and flow parallel to the laser beam. This is because a large portion of the radar reflectivity factor (dBZ) is due to medium and large size hydrometeors, that are less influenced by wind. In the case of the impact disdrometer instead, RRE behaves very similarly to the CE, with values that increases with increasing wind speed. This is due to the shift toward larger diameters noted in the DSD that occurs when hydrometeors kinetic energy is increased by wind

    Waveform Design for 4D-Imaging mmWave PMCW MIMO Radars with Spectrum Compatibility

    Get PDF
    4D-imaging mmWave radars offer high angular resolution in both azimuth and elevation, but achieving this requires a large antenna aperture size and a significant number of transmit and/or receive channels. This presents a challenge for designing transmit waveforms that are both orthogonal and separable on the receive side, as well as have low auto-correlation sidelobes. This paper focuses on designing an orthogonal set of sequences for 4D-imaging radar sensors based on PMCW technology. We propose an iterative optimization framework based on Coordinate Descent, which considers the Regions Of Interest (ROI) and optimizes a phase-modulated constant modulus waveform set based on weighted integrated sidelobe level on the required ROI and spectrum shaping. The optimization also accounts for the radar working adjacent to communication systems and other radar sensors. Simulation results are provided to demonstrate the effectiveness of the proposed method, which achieves low sidelobe levels and is compatible with spectrum constraints

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    In-band-full-duplex integrated access and backhaul enabled next generation wireless networks

    Get PDF
    In sixth generation (6G) wireless networks, the severe traffic congestion in the microwave frequencies motivates the exploration of the large available bandwidth in the millimetre-wave (mmWave) frequencies to achieve higher network capacity and data rate. Since large-scale antenna arrays and dense base station deployment are required, the hybrid beamforming architecture and the recently proposed integrated access and backhaul (IAB) networks become potential candidates for providing cost and hardware-friendly techniques for 6G wireless networks. In addition, in-band-full-duplex (IBFD) has been recently paid much more research attention since it can make the transmission and reception occur in the same time and frequency band, which nearly doubles the communication spectral efficiency (SE) compared with state-of-the-art half-duplex (HD) systems. Since 6G will explore sensing as its new capability, future wireless networks can go far beyond communications. Motivated by this, the development of integrated sensing and communications (ISAC) systems, where radar and communication systems share the same spectrum resources and hardware, has become one of the major goals in 6G. This PhD thesis focuses on the design and analysis of IBFD-IAB wireless networks in the frequency range 2 (FR2) band (≄ 24.250 GHz) at mmWave frequencies for the potential use in 6G. Firstly, we develop a novel design for the single-cell FR2-IBFD-IAB networks with subarray-based hybrid beamforming, which can enhance the SE and coverage while reducing the latency. The radio frequency (RF) beamformers are obtained via RF codebooks given by a modified matrix-wise Linde-Buzo-Gray (LBG) algorithm. The self-interference (SI) is cancelled in three stages, where the first stage of antenna isolation is assumed to be successfully deployed. The second stage consists of the optical domain-based RF cancellation, where cancellers are connected with the RF chain pairs. The third stage is comprised of the digital cancellation via successive interference cancellation followed by minimum mean-squared error (MSE) baseband receiver. Multiuser interference in the access link is cancelled by zero-forcing at the IAB-node transmitter. The proposed codebook algorithm avoids undesirable low-rank behaviour, while the proposed staged-SI cancellation (SIC) shows satisfactory cancellation performance in the wideband IBFD scenario. However, the system performance can be affected by the hardware impairments (HWI) and RF effective channel estimation errors. Secondly, we study an FR2-IBFD-ISAC-IAB network for vehicle-to-everything communications, where the IAB-node acts as a roadside unit performing sensing and communication simultaneously (i.e., at the same time and frequency band). The SI due to the IBFD operation will be cancelled in the propagation, analogue, and digital domains; only the residual SI (RSI) is reserved for performance analysis. Considering the subarray-based hybrid beamforming structure, including HWI and RF effective SI channel estimation error, the unscented Kalman filter is used for tracking multiple vehicles in the studied scenario. The proposed system shows an enhanced SE compared with the HD system, and the tracking MSEs averaged across all vehicles of each state parameter are close to their posterior CramĂ©r-Rao lower bounds. Thirdly, we analyse the performance of the multi-cell wideband single-hop backhaul FR2-IBFD-IAB networks by using stochastic geometry analysis. We model the wired-connected next generation NodeBs (gNBs) as the MatĂ©rn hard-core point process (MHCPP) to meet the real-world deployment requirement and reduce the cost caused by wired connection in the network. We first derive association probabilities that reflect how likely the typical user-equipment is served by a gNB or an IAB-node based on the maximum long-term averaged biased-received-desired-signal power criteria. Further, by leveraging the composite Gamma-Lognormal distribution, we derive results for the signal to interference plus noise ratio coverage, capacity with outage, and ergodic capacity of the network. In order to assess the impact of noise, we consider the sidelobe gain on inter-cell interference links and the analogue to digital converter quantization noise. Compared with the HD transmission, the designated system shows an enhanced capacity when the SIC operates successfully. We also study how the power bias and density ratio of the IAB-node to gNB, and the hard-core distance can affect system performance. Overall, this thesis aims to contribute to the research efforts of shaping the 6G wireless networks by designing and analysing the FR2-IBFD-IAB inspired networks in the FR2 band at mmWave frequencies that will be potentially used in 6G for both communication only and ISAC scenarios
    • 

    corecore