8,109 research outputs found

    Evaluation campaigns and TRECVid

    Get PDF
    The TREC Video Retrieval Evaluation (TRECVid) is an international benchmarking activity to encourage research in video information retrieval by providing a large test collection, uniform scoring procedures, and a forum for organizations interested in comparing their results. TRECVid completed its fifth annual cycle at the end of 2005 and in 2006 TRECVid will involve almost 70 research organizations, universities and other consortia. Throughout its existence, TRECVid has benchmarked both interactive and automatic/manual searching for shots from within a video corpus, automatic detection of a variety of semantic and low-level video features, shot boundary detection and the detection of story boundaries in broadcast TV news. This paper will give an introduction to information retrieval (IR) evaluation from both a user and a system perspective, highlighting that system evaluation is by far the most prevalent type of evaluation carried out. We also include a summary of TRECVid as an example of a system evaluation benchmarking campaign and this allows us to discuss whether such campaigns are a good thing or a bad thing. There are arguments for and against these campaigns and we present some of them in the paper concluding that on balance they have had a very positive impact on research progress

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    High-level feature detection from video in TRECVid: a 5-year retrospective of achievements

    Get PDF
    Successful and effective content-based access to digital video requires fast, accurate and scalable methods to determine the video content automatically. A variety of contemporary approaches to this rely on text taken from speech within the video, or on matching one video frame against others using low-level characteristics like colour, texture, or shapes, or on determining and matching objects appearing within the video. Possibly the most important technique, however, is one which determines the presence or absence of a high-level or semantic feature, within a video clip or shot. By utilizing dozens, hundreds or even thousands of such semantic features we can support many kinds of content-based video navigation. Critically however, this depends on being able to determine whether each feature is or is not present in a video clip. The last 5 years have seen much progress in the development of techniques to determine the presence of semantic features within video. This progress can be tracked in the annual TRECVid benchmarking activity where dozens of research groups measure the effectiveness of their techniques on common data and using an open, metrics-based approach. In this chapter we summarise the work done on the TRECVid high-level feature task, showing the progress made year-on-year. This provides a fairly comprehensive statement on where the state-of-the-art is regarding this important task, not just for one research group or for one approach, but across the spectrum. We then use this past and on-going work as a basis for highlighting the trends that are emerging in this area, and the questions which remain to be addressed before we can achieve large-scale, fast and reliable high-level feature detection on video

    Inexpensive fusion methods for enhancing feature detection

    Get PDF
    Recent successful approaches to high-level feature detection in image and video data have treated the problem as a pattern classification task. These typically leverage the techniques learned from statistical machine learning, coupled with ensemble architectures that create multiple feature detection models. Once created, co-occurrence between learned features can be captured to further boost performance. At multiple stages throughout these frameworks, various pieces of evidence can be fused together in order to boost performance. These approaches whilst very successful are computationally expensive, and depending on the task, require the use of significant computational resources. In this paper we propose two fusion methods that aim to combine the output of an initial basic statistical machine learning approach with a lower-quality information source, in order to gain diversity in the classified results whilst requiring only modest computing resources. Our approaches, validated experimentally on TRECVid data, are designed to be complementary to existing frameworks and can be regarded as possible replacements for the more computationally expensive combination strategies used elsewhere

    Cooperative Synchronization in Wireless Networks

    Full text link
    Synchronization is a key functionality in wireless network, enabling a wide variety of services. We consider a Bayesian inference framework whereby network nodes can achieve phase and skew synchronization in a fully distributed way. In particular, under the assumption of Gaussian measurement noise, we derive two message passing methods (belief propagation and mean field), analyze their convergence behavior, and perform a qualitative and quantitative comparison with a number of competing algorithms. We also show that both methods can be applied in networks with and without master nodes. Our performance results are complemented by, and compared with, the relevant Bayesian Cram\'er-Rao bounds

    A Case for Time Slotted Channel Hopping for ICN in the IoT

    Full text link
    Recent proposals to simplify the operation of the IoT include the use of Information Centric Networking (ICN) paradigms. While this is promising, several challenges remain. In this paper, our core contributions (a) leverage ICN communication patterns to dynamically optimize the use of TSCH (Time Slotted Channel Hopping), a wireless link layer technology increasingly popular in the IoT, and (b) make IoT-style routing adaptive to names, resources, and traffic patterns throughout the network--both without cross-layering. Through a series of experiments on the FIT IoT-LAB interconnecting typical IoT hardware, we find that our approach is fully robust against wireless interference, and almost halves the energy consumed for transmission when compared to CSMA. Most importantly, our adaptive scheduling prevents the time-slotted MAC layer from sacrificing throughput and delay
    corecore