681 research outputs found

    Mobility and QoS-Aware Service Management for Cellular Networks

    Get PDF

    HANDOVER MANAGEABILITY AND PERFORMANCE MODELING IN MOBILE COMMUNICATION NETWORKS

    Get PDF
    In cellular Networks, a mobile station (MSā€™s) move from one cell region to another on seamless Communicationscheduling.. Handoff or Handover is an essential issue for the seamless communication. Several approaches havebeen proposed for handoff performance analysis in mobile communication systems. In Code-Division Multiple-Access (CDMA) systems with soft handoff, mobile stations (MSā€™s) within a soft-handoff region (SR) use multipleradio channels and receive their signals from multiple base stations (BSā€™s) simultaneously. Consequently, SRā€™sshould be investigated for handoff analysis in CDMA systems. In this paper, a model for soft handoff in CDMAnetworks is developed by initiating an overlap region between adjacent cells facilitating the derivation of handoffmanageability performance model. We employed an empirical modelling approach to support our analyticalfindings, measure and investigated the performance characteristics of typical communication network over a specificperiod from March to June, 2013 in an established cellular communication network operator in Nigeria. Theobserved data parameters were used as model predictors during the simulation phase. Simulation results revealedthat increased system capacity degrades the performance of the network due to congestion, dropping and callblocking, which the system is most likely to experience, but the rate of those factors could be minimized by properlyconsidering the handoff probabilities level. Comparing our results, we determined the effective and efficientperformance model and recommend it to network operators for an enhanced Quality of Service (QoS), which willpotentially improve the cost-value ratio for mobile users and thus confirmed that Soft Handoff (SH) performancemodel should be carefully implemented to minimize cellular communication system defects.Keywords: CDMA, QoS, optimization, Handoff Manageability, Congestion, Call Blocking and Call Dropping,

    A Comparative study on Handoff Algorithms for GSM and CDMA Cellular Networks

    Get PDF
    The GSM, CDMA cellular systems are most trendy 2G and 3G digital cellular telecommunications systems, which is widely used throughout the world. These systems have many advantages such as high security, higher quality of call transmission over the long distances, low transmitted power, and enhanced capacity with more efficient utilization of the frequency spectrum. With these advantages these cellular systems have attracted more subscribers with more attention in the field of mobile communications. One of the most attractive features of cellular system is handoff which is a continuation of an active call when the mobile is moving from one cell to another without disconnecting the call. Usually, continuous service is achieved by efficiently designed handoff algorithms. So, efficient handoff algorithms are necessary for enhancing the capacity and QoS of cellular system. In this paper, the handoff analysis for GSM, CDMA cellular networks are done under various propagation models. Various handoff algorithms of GSM are described and also a novel received signal strength (RSS) based GSM handoff algorithm with adaptive hysteresis is analyzed. CDMA Soft handoff algorithm is analyzed and effective soft handoff parameters are estimated for better performance. The Comparison of handoff algorithms is studied based on results

    Flat Cellular (UMTS) Networks

    Get PDF
    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective it was better to concentrate traffic and to share the cost of processing equipment over a large set of users while keeping the base stations relatively cheap. However, we believe the economic reasons for designing cellular systems in a hierarchical manner have disappeared: in fact, hierarchical architectures hinder future efficient deployments. In this paper, we argue for completely flat cellular wireless systems, which need just one type of specialized network element to provide radio access network (RAN) functionality, supplemented by standard IP-based network elements to form a cellular network. While the reason for building a cellular system in a hierarchical fashion has disappeared, there are other good reasons to make the system architecture flat: (1) as wireless transmission techniques evolve into hybrid ARQ systems, there is less need for a hierarchical cellular system to support spatial diversity; (2) we foresee that future cellular networks are part of the Internet, while hierarchical systems typically use interfaces between network elements that are specific to cellular standards or proprietary. At best such systems use IP as a transport medium, not as a core component; (3) a flat cellular system can be self scaling while a hierarchical system has inherent scaling issues; (4) moving all access technologies to the edge of the network enables ease of converging access technologies into a common packet core; and (5) using an IP common core makes the cellular network part of the Internet

    System modeling and performance evaluation of rate allocation schemes for packet data services in wideband CDMA systems

    Get PDF
    To fully exploit the potential of a wideband CDMA-based mobile Internet computing system, an efficient algorithm is needed for judiciously performing rate allocation, so as to orchestrate and allocate bandwidth for voice services and high data rate applications. However, in existing standards (e.g., cdma2000), only a first-come-first-served equal sharing allocation algorithm is used, potentially leading to a low bandwidth utilization and inadequate support of high data rate multimedia mobile applications (e.g., video/audio files swapping, multimedia messaging services, etc.). In this paper, we first analytically model the rate allocation problem that captures realistic system constraints such as downlink power limits and control, uplink Interference effects, physical channel adaptation, and soft handoff. We then suggest six efficient rate allocation schemes that are designed based on different philosophies: rate optimal, fairness-based, and user-oriented. Simulations are performed to evaluate the effectiveness of the rate allocation schemes using realistic system parameters In our model.published_or_final_versio

    Network congestion management using Call Admission Control

    Get PDF
    Abstract: Call Admission Control schemes have been used extensively in improving mobile network quality. Signal quality degradation, interference and network congestion has been a real issue for Global System for Mobile Communication (GSM) as the number of mobile users increased rapidly. It has been an issue in providing a decent Quality of Service (QoS) to the network users especially during the period of high network traffic. It is essential to maintain a certain level of quality in handling mobile network congestion. Fortunately, Call Admission Control is a strategy that can provide credible QoS by limiting the number of connections into the cellular network thereby reducing network congestions, dropping of calls, interference and other QoS problems. In this paper, we discuss issues around mobile network congestion, overview of congestion management schemes, attributes and benefits of Call Admission Control (CAC). We also highlight different handoff schemes. We simulated a typical CAC scheme comparing the new call blocking probability and handoff call probability
    • ā€¦
    corecore