2 research outputs found

    3d model identification of a soft robotic neck

    Get PDF
    Soft robotics is becoming an emerging solution to many of the problems in robotics, such as weight, cost and human interaction. In order to overcome such problems, bio-inspired designs have introduced new actuators, links and architectures. However, the complexity of the required models for control has increased dramatically and geometrical model approaches, widely used to model rigid dynamics, are not enough to model these new hardware types. In this paper, different linear and non-linear models will be used to model a soft neck consisting of a central soft link actuated by three motor-driven tendons. By combining the force on the different tendons, the neck is able to perform a motion similar to that of a human neck. In order to simplify the modeling, first a system input¿output redefinition is proposed, considering the neck pitch and roll angles as outputs and the tendon lengths as inputs. Later, two identification strategies are selected and adapted to our case: set membership, a data-driven, nonlinear and non-parametric identification strategy which needs no input redefinition; and Recursive least-squares (RLS), a widely recognized identification technique. The first method offers the possibility of modeling complex dynamics without specific knowledge of its mathematical representation. The selection of this method was done considering its possible extension to more complex dynamics and the fact that its impact in soft robotics is yet to be studied according to the current literature. On the other hand, RLS shows the implication of using a parametric and linear identification in a nonlinear plant, and also helps to evaluate the degree of nonlinearity of the system by comparing the different performances. In addition to these methods, a neural network identification is used for comparison purposes. The obtained results validate the modeling approaches proposed.Funding: The research leading to these results has received funding from the project Desarrollo de articulaciones blandas para aplicaciones robóticas, with reference IND2020/IND-1739, funded by the Comunidad Autónoma de Madrid (CAM) (Department of Education and Research), and from RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos, FaseIV; S2018/NMT-4331), funded by “Programas de Actividades I+D en la Comunidad de Madrid” and cofunded by Structural Funds of the EU

    Design of a pneumatic soft robotic actuator using model-based optimization

    Get PDF
    In this thesis, the design and optimization process of a novel soft intelligent modular pad (IntelliPad) for the purpose of pressure injury prevention is presented. The structure of the IntelliPad consists of multiple individual multi-chamber soft pneumatic-driven actuators that use pressurized air and vacuum. Each actuator is able to provide both vertical and horizontal motions that can be controlled independently. An analytical modeling approach using multiple cantilever beams and virtual springs connected in a closed formed structure was developed to analyze the mechanical performance of the actuator. The analytical approach was validated by a finite element analysis. For optimizing the actuator\u27s mechanical performance, firefly algorithm and deep reinforcement learning-based design optimization frameworks were developed with the purpose of maximizing the horizontal motion of the top surface of the actuators, while minimizing its corresponding effect on the vertical motion. Four optimized designs were fabricated. The actuators were tested and validated experimentally to demonstrate their required mechanical performance in order to regulate normal and shear stresses at the skin-pad interface for pressure injury prevention applications
    corecore