242 research outputs found

    Designing LMPA-Based Smart Materials for Soft Robotics Applications

    Get PDF
    This doctoral research, Designing LMPA (Low Melting Point Alloy) Based Smart Materials for Soft Robotics Applications, includes the following topics: (1) Introduction; (2) Robust Bicontinuous Metal-Elastomer Foam Composites with Highly Tunable Mechanical Stiffness; (3) Actively Morphing Drone Wing Design Enabled by Smart Materials for Green Unmanned Aerial Vehicles; (4) Dynamically Tunable Friction via Subsurface Stiffness Modulation; (5) LMPA Wool Sponge Based Smart Materials with Tunable Electrical Conductivity and Tunable Mechanical Stiffness for Soft Robotics; and (6) Contributions and Future Work.Soft robots are developed to interact safely with environments. Smart composites with tunable properties have found use in many soft robotics applications including robotic manipulators, locomotors, and haptics. The purpose of this work is to develop new smart materials with tunable properties (most importantly, mechanical stiffness) upon external stimuli, and integrate these novel smart materials in relevant soft robots. Stiffness tunable composites developed in previous studies have many drawbacks. For example, there is not enough stiffness change, or they are not robust enough. Here, we explore soft robotic mechanisms integrating stiffness tunable materials and innovate smart materials as needed to develop better versions of such soft robotic mechanisms. First, we develop a bicontinuous metal-elastomer foam composites with highly tunable mechanical stiffness. Second, we design and fabricate an actively morphing drone wing enabled by this smart composite, which is used as smart joints in the drone wing. Third, we explore composite pad-like structures with dynamically tunable friction achieved via subsurface stiffness modulation (SSM). We demonstrate that when these composite structures are properly integrated into soft crawling robots, the differences in friction of the two ends of these robots through SSM can be used to generate translational locomotion for untethered crawling robots. Also, we further develop a new class of smart composite based on LMPA wool sponge with tunable electrical conductivity and tunable stiffness for soft robotics applications. The implications of these studies on novel smart materials design are also discussed

    Design, Actuation, and Functionalization of Untethered Soft Magnetic Robots with Life-Like Motions: A Review

    Full text link
    Soft robots have demonstrated superior flexibility and functionality than conventional rigid robots. These versatile devices can respond to a wide range of external stimuli (including light, magnetic field, heat, electric field, etc.), and can perform sophisticated tasks. Notably, soft magnetic robots exhibit unparalleled advantages among numerous soft robots (such as untethered control, rapid response, and high safety), and have made remarkable progress in small-scale manipulation tasks and biomedical applications. Despite the promising potential, soft magnetic robots are still in their infancy and require significant advancements in terms of fabrication, design principles, and functional development to be viable for real-world applications. Recent progress shows that bionics can serve as an effective tool for developing soft robots. In light of this, the review is presented with two main goals: (i) exploring how innovative bioinspired strategies can revolutionize the design and actuation of soft magnetic robots to realize various life-like motions; (ii) examining how these bionic systems could benefit practical applications in small-scale solid/liquid manipulation and therapeutic/diagnostic-related biomedical fields

    An earthworm-like modular soft robot for locomotion in multi-terrain environments

    Get PDF
    Robotic locomotion in subterranean environments is still unsolved, and it requires innovative designs and strategies to overcome the challenges of burrowing and moving in unstructured conditions with high pressure and friction at depths of a few centimeters. Inspired by antagonistic muscle contractions and constant volume coelomic chambers observed in earthworms, we designed and developed a modular soft robot based on a peristaltic soft actuator (PSA). The PSA demonstrates two active configurations from a neutral state by switching the input source between positive and negative pressure. PSA generates a longitudinal force for axial penetration and a radial force for anchorage, through bidirectional deformation of the central bellows-like structure, which demonstrates its versatility and ease of control. The performance of PSA depends on the amount and type of fluid confined in an elastomer chamber, generating different forces and displacements. The assembled robot with five PSA modules enabled to perform peristaltic locomotion in different media. The role of friction was also investigated during experimental locomotion tests by attaching passive scales like earthworm setae to the ventral side of the robot. This study proposes a new method for developing a peristaltic earthworm-like soft robot and provides a better understanding of locomotion in different environments

    Non-inertial Undulatory Locomotion Across Scales

    Get PDF
    Locomotion is crucial to behaviors such as predator avoidance, foraging, and mating. In particular, undulatory locomotion is one of the most common forms of locomotion. From microscopic flagellates to swimming fish and slithering snakes, this form of locomotion is a remarkably robust self-propulsion strategy that allows a diversity of organisms to navigate myriad environments. While often thought of as exclusive to limbless organisms, a variety of locomotors possessing few to many appendages rely on waves of undulation for locomotion. In inertial regimes, organisms can leverage the forces generated by their body and the surrounding medium's inertia to enhance their locomotion (e.g., coast or glide). On the other hand, in non-inertial regimes self-propulsion is dominated by damping (viscous or frictional), and thus the ability for organisms to generate motion is dependent on the sequence of internal shape changes. In this thesis, we study a variety of undulating systems that locomote in highly damped regimes. We perform studies on systems ranging from zero to many appendages. Specifically, we focus on four distinct undulatory systems: 1) C. elegans, 2) quadriflagellate algae (bearing four flagella), 3) centipedes on terrestrial environments, and 4) centipedes on fluid environments. For each of these systems, we study how the coordination of their many degrees of freedom leads to specific locomotive behaviors. Further, we propose hypotheses for the observed behaviors in the context of each of these system's ecology.Ph.D

    Vision-Based Soft Mobile Robot Inspired by Silkworm Body and Movement Behavior

    Get PDF
    Designing an inexpensive, low-noise, safe for individual, mobile robot with an efficient vision system represents a challenge. This paper proposes a soft mobile robot inspired by the silkworm body structure and moving behavior. Two identical pneumatic artificial muscles (PAM) have been used to design the body of the robot by sewing the PAMs longitudinally. The proposed robot moves forward, left, and right in steps depending on the relative contraction ratio of the actuators. The connection between the two artificial muscles gives the steering performance at different air pressures of each PAM. A camera (eye) integrated into the proposed soft robot helps it to control its motion and direction. The silkworm soft robot detects a specific object and tracks it continuously. The proposed vision system is used to help with automatic tracking based on deep learning platforms with real-time live IR camera. The object detection platform, named, YOLOv3 is used effectively to solve the challenge of detecting high-speed tiny objects like Tennis balls. The model is trained with a dataset consisting of images of   Tennis balls. The work is simulated with Google Colab and then tested in real-time on an embedded device mated with a fast GPU called Jetson Nano development kit. The presented object follower robot is cheap, fast-tracking, and friendly to the environment. The system reaches a 99% accuracy rate during training and testing. Validation results are obtained and recorded to prove the effectiveness of this novel silkworm soft robot. The research contribution is designing and implementing a soft mobile robot with an effective vision system

    Snake and Snake Robot Locomotion in Complex, 3-D Terrain

    Get PDF
    Snakes are able to traverse almost all types of environments by bending their elongate bodies in three dimensions to interact with the terrain. Similarly, a snake robot is a promising platform to perform critical tasks in various environments. Understanding how 3-D body bending effectively interacts with the terrain for propulsion and stability can not only inform how snakes move through natural environments, but also inspire snake robots to achieve similar performance to facilitate humans. How snakes and snake robots move on flat surfaces has been understood relatively well in previous studies. However, such ideal terrain is rare in natural environments and little was understood about how to generate propulsion and maintain stability when large height variations occur, except for some qualitative descriptions of arboreal snake locomotion and a few robots using geometric planning. To bridge this knowledge gap, in this dissertation research we integrated animal experiments and robotic studies in three representative environments: a large smooth step, an uneven arena of blocks of large height variation, and large bumps. We discovered that vertical body bending induces stability challenges but can generate large propulsion. When traversing a large smooth step, a snake robot is challenged by roll instability that increases with larger vertical body bending because of a higher center of mass. The instability can be reduced by body compliance that statistically increases surface contact. Despite the stability challenge, vertical body bending can potentially allow snakes to push against terrain for propulsion similar to lateral body bending, as demonstrated by corn snakes traversing an uneven arena. This ability to generate large propulsion was confirmed on a robot if body-terrain contact is well maintained. Contact feedback control can help the strategy accommodate perturbations such as novel terrain geometry or excessive external forces by helping the body regain lost contact. Our findings provide insights into how snakes and snake robots can use vertical body bending for efficient and versatile traversal of the three-dimensional world while maintaining stability

    Bio-inspired Dual-auger Self-burrowing Robots in Granular Media

    Full text link
    It has been found that certain biological organisms, such as Erodium seeds and Scincus scincus, are capable of effectively and efficiently burying themselves in soil. Biological Organisms employ various locomotion modes, including coiling and uncoiling motions, asymmetric body twisting, and undulating movements that generate motion waves. The coiling-uncoiling motion drives a seed awn to bury itself like a corkscrew, while sandfish skinks use undulatory swimming, which can be thought of as a 2D version of helical motion. Studying burrowing behavior aims to understand how animals navigate underground, whether in their natural burrows or underground habitats, and to implement this knowledge in solving geotechnical penetration problems. Underground horizontal burrowing is challenging due to overcoming the resistance of interaction forces of granular media to move forward. Inspired by the burrowing behavior of seed-awn and sandfish skink, a horizontal self-burrowing robot is developed. The robot is driven by two augers and stabilized by a fin structure. The robot's burrowing behavior is studied in a laboratory setting. It is found that rotation and propulsive motion along the axis of the auger's helical shape significantly reduce granular media's resistance against horizontal penetration by breaking kinematic symmetry or granular media boundary. Additional thrusting and dragging tests were performed to examine the propulsive and resistive forces and unify the observed burrowing behaviors. The tests revealed that the rotation of an auger not only reduces the resistive force and generates a propulsive force, which is influenced by the auger geometry, rotational speed, and direction. As a result, the burrowing behavior of the robot can be predicted using the geometry-rotation-force relations.Comment: Master's thesis, 62 pages, 40 figures, ProQues

    Learning Safe and Stable Motion Plans with Neural Ordinary Differential Equations

    Full text link
    A learning-based modular motion planning pipeline is presented that is compliant, safe, and reactive to perturbations at task execution. A nominal motion plan, defined as a nonlinear autonomous dynamical system (DS), is learned offline from kinesthetic demonstrations using a Neural Ordinary Differential Equation (NODE) model. To ensure both stability and safety during inference, a novel approach is proposed which selects a target point at each time step for the robot to follow, using a time-varying target trajectory generated by the learned NODE. A correction term to the NODE model is computed online by solving a Quadratic Program that guarantees stability and safety using Control Lyapunov Functions and Control Barrier Functions, respectively. Our approach outperforms baseline DS learning techniques on the LASA handwriting dataset and is validated on real-robot experiments where it is shown to produce stable motions, such as wiping and stirring, while being robust to physical perturbations and safe around humans and obstacles

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities
    • …
    corecore