485 research outputs found

    Increasing resilience of ATM networks using traffic monitoring and automated anomaly analysis

    Get PDF
    Systematic network monitoring can be the cornerstone for the dependable operation of safety-critical distributed systems. In this paper, we present our vision for informed anomaly detection through network monitoring and resilience measurements to increase the operators' visibility of ATM communication networks. We raise the question of how to determine the optimal level of automation in this safety-critical context, and we present a novel passive network monitoring system that can reveal network utilisation trends and traffic patterns in diverse timescales. Using network measurements, we derive resilience metrics and visualisations to enhance the operators' knowledge of the network and traffic behaviour, and allow for network planning and provisioning based on informed what-if analysis

    Real-time DDoS attack detection for Cisco IOS using NetFlow

    Get PDF
    Flow-based DDoS attack detection is typically performed by analysis applications that are installed on or close to a flow collector. Although this approach allows for easy deployment, it makes detection far from real-time and susceptible to DDoS attacks for the following reasons. First, the fact that the flow export process is timeout-based and that flow collectors typically provide data to analysis applications in chunks, can result in detection delays in the order of several minutes. Second, by the nature of flow export, attack traffic may be amplified by the flow export process if the original packets are small enough and are part of small flows. We have shown in a previous work how to perform DDoS attack detection on a flow exporter instead of a flow collector, i.e., close to the data source and in a real-time fashion, which however required access to a fully-extendible flow monitoring infrastructure. In this work, we investigate whether it is possible to operate the same detection system on a widely deployed networking platform: Cisco IOS. Since our ultimate goal is to identify besides the presence of an attack also attackers and targets, we rely on NetFlow. In this context, we present our DDoS attack detection prototype that has shown to generate a constant load on the underlying platform — even under attacks — underlining that DDoS attack detection can be performed on a Cisco Catalyst 6500 in production networks, if enough spare capacity is available

    Fuzzy Rule Interpolation and SNMP-MIB for Emerging Network Abnormality

    Get PDF
    It is difficult to implement an efficient detection approach for Intrusion Detection Systems (IDS) and many factors contribute to this challenge. One such challenge concerns establishing adequate boundaries and finding a proper data source. Typical IDS detection approaches deal with raw traffics. These traffics need to be studied in depth and thoroughly investigated in order to extract the required knowledge base. Another challenge involves implementing the binary decision. This is because there are no reasonable limits between normal and attack traffics patterns. In this paper, we introduce a novel idea capable of supporting the proper data source while avoiding the issues associated with the binary decision. This paper aims to introduce a detection approach for defining abnormality by using the Fuzzy Rule Interpolation (FRI) with Simple Network Management Protocol (SNMP) Management Information Base (MIB) parameters. The strength of the proposed detection approach is based on adapting the SNMP-MIB parameters with the FRI.  This proposed method eliminates the raw traffic processing component which is time consuming and requires extensive computational measures. It also eliminates the need for a complete fuzzy rule based intrusion definition. The proposed approach was tested and evaluated using an open source SNMP-MIB dataset and obtained a 93% detection rate. Additionally, when compared to other literature in which the same test-bed environment was employed along with the same number of parameters, the proposed detection approach outperformed the support vector machine and neural network. Therefore, combining the SNMP-MIB parameters with the FRI based reasoning could be beneficial for detecting intrusions, even in the case if the fuzzy rule based intrusion definition is incomplete (not fully defined)

    An Assessment of Practical Hands-On Lab Activities in Network Security Management

    Get PDF
    With the advancement in technology over the past decades, networks have become increasingly large and complex. In the meantime, cyberattacks have become highly sophisticated making them difficult to detect. These changes make securing a network more challenging than ever before. Hence, it is critical to prepare a comprehensive guide of network security management for students assist them in becoming network security professionals. The objective of this paper is to introduce a variety of techniques related to network security management, such as Simple Network Management Protocol (SNMP), event management, security policy management, risk management, access control, and remote monitoring. With the usage of these techniques, malicious activities from outsiders and misuse by insiders can be effectively monitored and managed. A network learning environment is proposed for students to practice network security management experiments. In addition, hands-on lab exercises are suggested. These activities will help students become familiar with the operations of network security management and allow them to further apply practical skills to protect networks
    • 

    corecore