288 research outputs found

    Reconfigurable Turbo/Viterbi Channel Decoder in the Coarse-Grained Montium Architecture

    Get PDF
    Mobile wireless communication systems become multi-mode systems. These future mobile systems employ multiple wireless communication standards, which are different by means of algorithms that are used to implement the baseband processing and the channel decoding. Efficient implementation of multiple wireless standards in mobile terminals requires energy-efficient and flexible hardware. We propose to implement both the baseband processing and channel decoding in a heterogeneous reconfigurable system-on-chip. The system-on-chip contains many processing elements of different granularities, which includes our coarse-grained reconfigurable MONTIUM architecture. We already showed the feasibility to implement the baseband processing of OFDM and WCDMA based communication systems in the MONTIUM. In this paper we implemented two kinds of channel decoders in the same MONTIUM architecture: Viterbi and Turbo decoding

    Reconfigurable architectures for beyond 3G wireless communication systems

    Get PDF

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    Implementation of Multi-standard Wireless Communication Receivers in a Heterogeneous Reconfigurable System-on-Chip

    Get PDF
    Future mobile terminals become multi-mode communication systems. In order to handle different standards, we propose to perform baseband processing in heterogeneous reconfigurable hardware. Not only the baseband processing but also error decoding differs for every communication system. We already proposed implementations of the baseband processing part of an OFDM receiver and a Wideband CDMA receiver in a heterogeneous reconfigurable system-on-chip. The system-on-chip contains processing elements of different granularities, which includes our coarse-grained reconfigurable MONTIUM architecture. Now, we also implemented an adaptive Viterbi decoder in the same coarse-grained MONTIUM architecture. The rate, constraint length and decision depth of the decoder can be adjusted to different communication systems. We show that the flexibility in the coarse-grained reconfigurable architecture is more than 200 times as energy-efficient compared to a general purpose solution but only 24 times less efficient compared to a dedicated solution

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool
    corecore