2 research outputs found

    Design and analysis of adaptive hierarchical low-power long-range networks

    Get PDF
    A new phase of evolution of Machine-to-Machine (M2M) communication has started where vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually change to multi-purpose IoT infrastructures that service different applications across multiple industries. New networking technologies are being deployed operating over sub-GHz frequency bands that enable multi-tenant connectivity over long distances and increase network capacity by enforcing low transmission rates to increase network capacity. Such networking technologies allow cloud-based platforms to be connected with large numbers of IoT devices deployed several kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area Networks (LPWANs), it remains unclear how to organize the wireless sensor network in a scaleable and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is presented in detail along with the technical details on the implementation in real-world hardware platforms. A platform-agnostic software firmware is produced that is evaluated in real-world large-scale testbeds. The performance of the networking scheme is evaluated through a series of experimental scenarios that generate environments with varying channel quality, failing nodes, and mobile nodes. The performance is evaluated in terms of the overall time required to organize the network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as well as the ability to adapt to channel failures. The experimental analysis indicate that the combination of long-range and short-range networking technologies can lead to scalable solutions that can service concurrently multiple applications

    Design and evaluation of a lightweight tracking algorithm using WSN

    No full text
    Evaluating target tracking protocols for wireless sensor networks that can localize multiple mobile devices, can be a very challenging task. Such protocols usually aim at minimizing communication overhead, data processing for the participating nodes, as well as delivering adequate tracking information of the mobile targets in a timely manner. In this paper we design a new localization protocol, where mobile assets can be tracked passively via software agents. We address the issues that hinder its performance due to the real environment conditions and provide a deployable protocol. The implementation, integration and experimentation of this new protocol and it's optimizations, were performed using the WISEBED framework. We apply our protocol in an indoors wireless sensor testbeds with multiple experimental scenarios to showcase scalability and trade-offs between network properties and configurable protocol parameters. The analysis of experimental results, depict a real view of the target tracking problem, regarding power consumption and the quality of tracking information. © 2011 IEEE
    corecore