4 research outputs found

    Coded Wireless Video Broadcast/Multicast

    Get PDF
    Advancements in video coding, compact media display, and communication devices, particularly in emerging broadband wireless access networks, have created many foreseeable and exciting applications of video broadcast/multicast over the wireless meidum. For efficient and robust wireless video broadcast/multicast under fading, this thesis presents and examines a novel cross-layer framework that exploits the interplay between applying protections on a successively refinable video source and transmitting through a layered broadcast/multicast channel. The framework is realistically achieved and evaluated by using multiple description coding (MDC) on a scalable video source and using superposition coding (SPC) for layered broadcast/multicast transmissions. An analytical model using the total received/recovered video bitstreams from each coded wireless broadcast/multicast signal is developed, which serves as a metric of video quality for the system analysis and optimization. An efficient methodology has demonstrated that optimal power allocations and modulation selections can be practically determined to improve the broadcast/multicast video quality. From the information-theoretical perspective, a general closed-form formula is derived for the end-to-end distortion analysis of the proposed framework, which is applicable to any (n, k) protection code applied on a successive refinable source with a Gaussian distribution over layered Gaussian broadcast channels. The results reveal the scenarios for the proposed framework to lead to a lower distortion than a legacy system without any protection. By analyzing the characteristics of the closed-form formula, an efficient O(n log n) algorithm is developed to determine optimal k values in the (n, k) protection codes that minimize the distortion under the framework. Finally, a cross-layer design of logical SPC modulation is introduced to achieve layered broadcast/multicast for scalable video. It serves as an alternative for practically implementing the proposed framework of coded wireless video broadcast/multicast, if the hardware-based SPC component is not available in a wireless system. In summary, the thesis presents comprehensive analyses, simulations, and experiments to understand, investigate, and justify the effectiveness of the proposed cross-layer framework of coded wireless video broadcast/multicast. More importantly, this thesis contributes to the advancement in the related fields of communication engineering and information theory by introducing a new design dimension in terms of protection. This is unique when compared to previously-reported layered approaches that are often manipulating conventional parameters alone such as power and modulation scheme. The impact of this dimension was unapparent in the past, but is now proven as an effective means to enable high-quality, efficient, and robust wireless video broadcast/multicast for promising media applications

    Joint Source Channel Coding in Broadcast and Relay Channels: A Non-Asymptotic End-to-End Distortion Approach

    Get PDF
    The paradigm of separate source-channel coding is inspired by Shannon's separation result, which implies the asymptotic optimality of designing source and channel coding independently from each other. The result exploits the fact that channel error probabilities can be made arbitrarily small, as long as the block length of the channel code can be made arbitrarily large. However, this is not possible in practice, where the block length is either fixed or restricted to a range of finite values. As a result, the optimality of source and channel coding separation becomes unknown, leading researchers to consider joint source-channel coding (JSCC) to further improve the performance of practical systems that must operate in the finite block length regime. With this motivation, this thesis investigates the application of JSCC principles for multimedia communications over point-to-point, broadcast, and relay channels. All analyses are conducted from the perspective of end-to-end distortion (EED) for results that are applicable to channel codes with finite block lengths in pursuing insights into practical design. The thesis first revisits the fundamental open problem of the separation of source and channel coding in the finite block length regime. Derived formulations and numerical analyses for a source-channel coding system reveal many scenarios where the EED reduction is positive when pairing the channel-optimized source quantizer (COSQ) with an optimal channel code, hence establishing the invalidity of the separation theorem in the finite block length regime. With this, further improvements to JSCC systems are considered by augmenting error detection codes with the COSQ. Closed-form EED expressions for such system are derived, from which necessary optimality conditions are identified and used in proposed algorithms for system design. Results for both the point-to-point and broadcast channels demonstrate significant reductions to the EED without sacrificing bandwidth when considering a tradeoff between quantization and error detection coding rates. Lastly, the JSCC system is considered under relay channels, for which a computable measure of the EED is derived for any relay channel conditions with nonzero channel error probabilities. To emphasize the importance of analyzing JSCC systems under finite block lengths, the large sub-optimality in performance is demonstrated when solving the power allocation configuration problem according to capacity-based formulations that disregard channel errors, as opposed to those based on the EED. Although this thesis only considers one JSCC setup of many, it is concluded that consideration of JSCC systems from a non-asymptotic perspective not only is more meaningful, but also reveals more relevant insight into practical system design. This thesis accomplishes such by maintaining the EED as a measure of system performance in each of the considered point-to-point, broadcast, and relay cases
    corecore