75 research outputs found

    A survey and classification of storage deduplication systems

    Get PDF
    The automatic elimination of duplicate data in a storage system commonly known as deduplication is increasingly accepted as an effective technique to reduce storage costs. Thus, it has been applied to different storage types, including archives and backups, primary storage, within solid state disks, and even to random access memory. Although the general approach to deduplication is shared by all storage types, each poses specific challenges and leads to different trade-offs and solutions. This diversity is often misunderstood, thus underestimating the relevance of new research and development. The first contribution of this paper is a classification of deduplication systems according to six criteria that correspond to key design decisions: granularity, locality, timing, indexing, technique, and scope. This classification identifies and describes the different approaches used for each of them. As a second contribution, we describe which combinations of these design decisions have been proposed and found more useful for challenges in each storage type. Finally, outstanding research challenges and unexplored design points are identified and discussed.This work is funded by the European Regional Development Fund (EDRF) through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the Fundacao para a Ciencia e a Tecnologia (FCT; Portuguese Foundation for Science and Technology) within project RED FCOMP-01-0124-FEDER-010156 and the FCT by PhD scholarship SFRH-BD-71372-2010

    Towards an accurate evaluation of deduplicated storage systems

    Get PDF
    Deduplication has proven to be a valuable technique for eliminating duplicate data in backup and archival systems and is now being applied to new storage environments with distinct requirements and performance trade-offs. Namely, deduplication system are now targeting large-scale cloud computing storage infrastructures holding unprecedented data volumes with a significant share of duplicate content. It is however hard to assess the usefulness of deduplication in particular settings and what techniques provide the best results. In fact, existing disk I/O benchmarks follow simplistic approaches for generating data content leading to unrealistic amounts of duplicates that do not evaluate deduplication systems accurately. Moreover, deduplication systems are now targeting heterogeneous storage environments, with specific duplication ratios, that benchmarks must also simulate. We address these issues with DEDISbench, a novel micro-benchmark for evaluating disk I/O performance of block based deduplication systems. As the main contribution, DEDISbench generates content by following realistic duplicate content distributions extracted from real datasets. Then, as a second contribution, we analyze and extract the duplicates found on three real storage systems, proving that DEDISbench can easily simulate several workloads. The usefulness of DEDISbench is shown by comparing it with Bonnie++ and IOzone open-source disk I/O micro-benchmarks on assessing two open-source deduplication systems, Opendedup and Lessfs, using Ext4 as a baseline. Our results lead to novel insight on the performance of these file systems.This work is funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) within project RED FCOMP-01-0124-FEDER-010156 and FCT by Ph.D scholarship SFRH-BD-71372-2010

    Doctor of Philosophy

    Get PDF
    dissertationIn the past few years, we have seen a tremendous increase in digital data being generated. By 2011, storage vendors had shipped 905 PB of purpose-built backup appliances. By 2013, the number of objects stored in Amazon S3 had reached 2 trillion. Facebook had stored 20 PB of photos by 2010. All of these require an efficient storage solution. To improve space efficiency, compression and deduplication are being widely used. Compression works by identifying repeated strings and replacing them with more compact encodings while deduplication partitions data into fixed-size or variable-size chunks and removes duplicate blocks. While we have seen great improvements in space efficiency from these two approaches, there are still some limitations. First, traditional compressors are limited in their ability to detect redundancy across a large range since they search for redundant data in a fine-grain level (string level). For deduplication, metadata embedded in an input file changes more frequently, and this introduces more unnecessary unique chunks, leading to poor deduplication. Cloud storage systems suffer from unpredictable and inefficient performance because of interference among different types of workloads. This dissertation proposes techniques to improve the effectiveness of traditional compressors and deduplication in improving space efficiency, and a new IO scheduling algorithm to improve performance predictability and efficiency for cloud storage systems. The common idea is to utilize similarity. To improve the effectiveness of compression and deduplication, similarity in content is used to transform an input file into a compression- or deduplication-friendly format. We propose Migratory Compression, a generic data transformation that identifies similar data in a coarse-grain level (block level) and then groups similar blocks together. It can be used as a preprocessing stage for any traditional compressor. We find metadata have a huge impact in reducing the benefit of deduplication. To isolate the impact from metadata, we propose to separate metadata from data. Three approaches are presented for use cases with different constrains. For the commonly used tar format, we propose Migratory Tar: a data transformation and also a new tar format that deduplicates better. We also present a case study where we use deduplication to reduce storage consumption for storing disk images, while at the same time achieving high performance in image deployment. Finally, we apply the same principle of utilizing similarity in IO scheduling to prevent interference between random and sequential workloads, leading to efficient, consistent, and predictable performance for sequential workloads and a high disk utilization

    Data Deduplication Technology for Cloud Storage

    Get PDF
    With the explosive growth of information data, the data storage system has stepped into the cloud storage era. Although the core of the cloud storage system is distributed file system in solving the problem of mass data storage, a large number of duplicate data exist in all storage system. File systems are designed to control how files are stored and retrieved. Fewer studies focus on the cloud file system deduplication technologies at the application level, especially for the Hadoop distributed file system. In this paper, we design a file deduplication framework on Hadoop distributed file system for cloud application developer. Proposed RFD-HDFS and FD-HDFS two data deduplication solutions process data deduplication online, which improves storage space utilisation and reduces the redundancy. In the end of the paper, we test the disk utilisation and the file upload performance on RFD-HDFS and FD-HDFS, and compare HDFS with the disk utilisation of two system frameworks. The results show that the two-system framework not only implements data deduplication function but also effectively reduces the disk utilisation of duplicate files. So, the proposed framework can indeed reduce the storage space by eliminating redundant HDFS file

    GPUs as Storage System Accelerators

    Full text link
    Massively multicore processors, such as Graphics Processing Units (GPUs), provide, at a comparable price, a one order of magnitude higher peak performance than traditional CPUs. This drop in the cost of computation, as any order-of-magnitude drop in the cost per unit of performance for a class of system components, triggers the opportunity to redesign systems and to explore new ways to engineer them to recalibrate the cost-to-performance relation. This project explores the feasibility of harnessing GPUs' computational power to improve the performance, reliability, or security of distributed storage systems. In this context, we present the design of a storage system prototype that uses GPU offloading to accelerate a number of computationally intensive primitives based on hashing, and introduce techniques to efficiently leverage the processing power of GPUs. We evaluate the performance of this prototype under two configurations: as a content addressable storage system that facilitates online similarity detection between successive versions of the same file and as a traditional system that uses hashing to preserve data integrity. Further, we evaluate the impact of offloading to the GPU on competing applications' performance. Our results show that this technique can bring tangible performance gains without negatively impacting the performance of concurrently running applications.Comment: IEEE Transactions on Parallel and Distributed Systems, 201
    corecore