3 research outputs found

    Hardware Considerations for Signal Processing Systems: A Step Toward the Unconventional.

    Full text link
    As we progress into the future, signal processing algorithms are becoming more computationally intensive and power hungry while the desire for mobile products and low power devices is also increasing. An integrated ASIC solution is one of the primary ways chip developers can improve performance and add functionality while keeping the power budget low. This work discusses ASIC hardware for both conventional and unconventional signal processing systems, and how integration, error resilience, emerging devices, and new algorithms can be leveraged by signal processing systems to further improve performance and enable new applications. Specifically this work presents three case studies: 1) a conventional and highly parallel mix signal cross-correlator ASIC for a weather satellite performing real-time synthetic aperture imaging, 2) an unconventional native stochastic computing architecture enabled by memristors, and 3) two unconventional sparse neural network ASICs for feature extraction and object classification. As improvements from technology scaling alone slow down, and the demand for energy efficient mobile electronics increases, such optimization techniques at the device, circuit, and system level will become more critical to advance signal processing capabilities in the future.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116685/1/knagphil_1.pd

    Algorithm and Architecture Co-design for High-performance Digital Signal Processing.

    Full text link
    CMOS scaling has been the driving force behind the revolution of digital signal processing (DSP) systems, but scaling is slowing down and the CMOS device is approaching its fundamental scaling limit. At the same time, DSP algorithms are continuing to evolve, so there is a growing gap between the increasing complexities of the algorithms and what is practically implementable. The gap can be bridged by exploring the synergy between algorithm and hardware design, using the so-called co-design techniques. In this thesis, algorithm and architecture co-design techniques are applied to X-ray computed tomography (CT) image reconstruction. Analysis of fixed-point quantization and CT geometry identifies an optimal word length and a mismatch between the object and projection grids. A water-filling buffer is designed to resolve the grid mismatch, and is combined with parallel fixed-point arithmetic units to improve the throughput. The analysis eventually leads to an out-of-order scheduling architecture that reduces the off-chip memory access by three orders of magnitude. The co-design techniques are further applied to the design of neural networks for sparse coding. Analysis of the neuron spiking dynamics leads to the optimal tuning of network size, spiking rate, and update step size to keep the spiking sparse. The resulting sparsity enables a bus-ring architecture to achieve both high throughput and scalability. A 65nm CMOS chip implementing the architecture demonstrates feature extraction at a throughput of 1.24G pixel/s at 1.0V and 310MHz. The error tolerance of sparse coding can be exploited to enhance the energy efficiency. As a natural next step after the sparse coding chip, a neural-inspired inference module (IM) is designed for object recognition. The object recognition chip consists of an IM based on sparse coding and an event-driven classifier. A learning co-processor is integrated on chip to enable on-chip learning. The throughput and energy efficiency are further improved using architectural techniques including sub-dividing the IM and classifier into modules and optimal pipelining. The result is a 65nm CMOS chip that performs sparse coding at 10.16G pixel/s at 1.0V and 635MHz. The co-design techniques can be applied to the design of other advanced DSP algorithms for emerging applications.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113344/1/jungkook_1.pd
    corecore