4,941 research outputs found

    Separation of Agile Waveform Time-Frequency Signatures from Coexisting Multimodal Systems

    Get PDF
    abstract: As the demand for wireless systems increases exponentially, it has become necessary for different wireless modalities, like radar and communication systems, to share the available bandwidth. One approach to realize coexistence successfully is for each system to adopt a transmit waveform with a unique nonlinear time-varying phase function. At the receiver of the system of interest, the waveform received for process- ing may still suffer from low signal-to-interference-plus-noise ratio (SINR) due to the presence of the waveforms that are matched to the other coexisting systems. This thesis uses a time-frequency based approach to increase the SINR of a system by estimating the unique nonlinear instantaneous frequency (IF) of the waveform matched to the system. Specifically, the IF is estimated using the synchrosqueezing transform, a highly localized time-frequency representation that also enables reconstruction of individual waveform components. As the IF estimate is biased, modified versions of the transform are investigated to obtain estimators that are both unbiased and also matched to the unique nonlinear phase function of a given waveform. Simulations using transmit waveforms of coexisting wireless systems are provided to demonstrate the performance of the proposed approach using both biased and unbiased IF estimators.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    A Review of Full-Sized Autonomous Racing Vehicle Sensor Architecture

    Full text link
    In the landscape of technological innovation, autonomous racing is a dynamic and challenging domain that not only pushes the limits of technology, but also plays a crucial role in advancing and fostering a greater acceptance of autonomous systems. This paper thoroughly explores challenges and advances in autonomous racing vehicle design and performance, focusing on Roborace and the Indy Autonomous Challenge (IAC). This review provides a detailed analysis of sensor setups, architectural nuances, and test metrics on these cutting-edge platforms. In Roborace, the evolution from Devbot 1.0 to Robocar and Devbot 2.0 is detailed, revealing insights into sensor configurations and performance outcomes. The examination extends to the IAC, which is dedicated to high-speed self-driving vehicles, emphasizing developmental trajectories and sensor adaptations. By reviewing these platforms, the analysis provides valuable insight into autonomous driving racing, contributing to a broader understanding of sensor architectures and the challenges faced. This review supports future advances in full-scale autonomous racing technology
    • …
    corecore