2 research outputs found

    Finite Model Reasoning in Expressive Fragments of First-Order Logic

    Full text link
    Over the past two decades several fragments of first-order logic have been identified and shown to have good computational and algorithmic properties, to a great extent as a result of appropriately describing the image of the standard translation of modal logic to first-order logic. This applies most notably to the guarded fragment, where quantifiers are appropriately relativized by atoms, and the fragment defined by restricting the number of variables to two. The aim of this talk is to review recent work concerning these fragments and their popular extensions. When presenting the material special attention is given to decision procedures for the finite satisfiability problems, as many of the fragments discussed contain infinity axioms. We highlight most effective techniques used in this context, their advantages and limitations. We also mention a few open directions of study.Comment: In Proceedings M4M9 2017, arXiv:1703.0173

    Neural-Symbolic Learning and Reasoning: A Survey and Interpretation

    Full text link
    The study and understanding of human behaviour is relevant to computer science, artificial intelligence, neural computation, cognitive science, philosophy, psychology, and several other areas. Presupposing cognition as basis of behaviour, among the most prominent tools in the modelling of behaviour are computational-logic systems, connectionist models of cognition, and models of uncertainty. Recent studies in cognitive science, artificial intelligence, and psychology have produced a number of cognitive models of reasoning, learning, and language that are underpinned by computation. In addition, efforts in computer science research have led to the development of cognitive computational systems integrating machine learning and automated reasoning. Such systems have shown promise in a range of applications, including computational biology, fault diagnosis, training and assessment in simulators, and software verification. This joint survey reviews the personal ideas and views of several researchers on neural-symbolic learning and reasoning. The article is organised in three parts: Firstly, we frame the scope and goals of neural-symbolic computation and have a look at the theoretical foundations. We then proceed to describe the realisations of neural-symbolic computation, systems, and applications. Finally we present the challenges facing the area and avenues for further research.Comment: 58 pages, work in progres
    corecore