2 research outputs found

    Operations on Boolean and Alternating Finite Automata

    Full text link
    We examine the complexity of basic regular operations on languages represented by Boolean and alternating finite automata. We get tight upper bounds m+n and m+n+1 for union, intersection, and difference, 2^m+n and 2^m+n+1 for concatenation, 2^n+n and 2^n+n+1 for square, m and m+1 for left quotient, 2^m and 2^m+1 for right quotient. We also show that in both models, the complexity of complementation and symmetric difference is n and m+n, respectively, while the complexity of star and reversal is 2^n. All our witnesses are described over a unary or binary alphabets, and whenever we use a binary alphabet, it is always optimal.Comment: In Proceedings AFL 2023, arXiv:2309.0112

    Operations on Automata with All States Final

    Full text link
    We study the complexity of basic regular operations on languages represented by incomplete deterministic or nondeterministic automata, in which all states are final. Such languages are known to be prefix-closed. We get tight bounds on both incomplete and nondeterministic state complexity of complement, intersection, union, concatenation, star, and reversal on prefix-closed languages.Comment: In Proceedings AFL 2014, arXiv:1405.527
    corecore