27,489 research outputs found

    Binding and Normalization of Binary Sparse Distributed Representations by Context-Dependent Thinning

    Get PDF
    Distributed representations were often criticized as inappropriate for encoding of data with a complex structure. However Plate's Holographic Reduced Representations and Kanerva's Binary Spatter Codes are recent schemes that allow on-the-fly encoding of nested compositional structures by real-valued or dense binary vectors of fixed dimensionality. In this paper we consider procedures of the Context-Dependent Thinning which were developed for representation of complex hierarchical items in the architecture of Associative-Projective Neural Networks. These procedures provide binding of items represented by sparse binary codevectors (with low probability of 1s). Such an encoding is biologically plausible and allows a high storage capacity of distributed associative memory where the codevectors may be stored. In contrast to known binding procedures, Context-Dependent Thinning preserves the same low density (or sparseness) of the bound codevector for varied number of component codevectors. Besides, a bound codevector is not only similar to another one with similar component codevectors (as in other schemes), but it is also similar to the component codevectors themselves. This allows the similarity of structures to be estimated just by the overlap of their codevectors, without retrieval of the component codevectors. This also allows an easy retrieval of the component codevectors. Examples of algorithmic and neural-network implementations of the thinning procedures are considered. We also present representation examples for various types of nested structured data (propositions using role-filler and predicate-arguments representation schemes, trees, directed acyclic graphs) using sparse codevectors of fixed dimension. Such representations may provide a fruitful alternative to the symbolic representations of traditional AI, as well as to the localist and microfeature-based connectionist representations

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader

    Sparse visual models for biologically inspired sensorimotor control

    Get PDF
    Given the importance of using resources efficiently in the competition for survival, it is reasonable to think that natural evolution has discovered efficient cortical coding strategies for representing natural visual information. Sparse representations have intrinsic advantages in terms of fault-tolerance and low-power consumption potential, and can therefore be attractive for robot sensorimotor control with powerful dispositions for decision-making. Inspired by the mammalian brain and its visual ventral pathway, we present in this paper a hierarchical sparse coding network architecture that extracts visual features for use in sensorimotor control. Testing with natural images demonstrates that this sparse coding facilitates processing and learning in subsequent layers. Previous studies have shown how the responses of complex cells could be sparsely represented by a higher-order neural layer. Here we extend sparse coding in each network layer, showing that detailed modeling of earlier stages in the visual pathway enhances the characteristics of the receptive fields developed in subsequent stages. The yield network is more dynamic with richer and more biologically plausible input and output representation

    Statistical Physics and Representations in Real and Artificial Neural Networks

    Full text link
    This document presents the material of two lectures on statistical physics and neural representations, delivered by one of us (R.M.) at the Fundamental Problems in Statistical Physics XIV summer school in July 2017. In a first part, we consider the neural representations of space (maps) in the hippocampus. We introduce an extension of the Hopfield model, able to store multiple spatial maps as continuous, finite-dimensional attractors. The phase diagram and dynamical properties of the model are analyzed. We then show how spatial representations can be dynamically decoded using an effective Ising model capturing the correlation structure in the neural data, and compare applications to data obtained from hippocampal multi-electrode recordings and by (sub)sampling our attractor model. In a second part, we focus on the problem of learning data representations in machine learning, in particular with artificial neural networks. We start by introducing data representations through some illustrations. We then analyze two important algorithms, Principal Component Analysis and Restricted Boltzmann Machines, with tools from statistical physics
    corecore