10,221 research outputs found

    Description Logic Reasoning

    Get PDF

    A Neutrosophic Description Logic

    Full text link
    Description Logics (DLs) are appropriate, widely used, logics for managing structured knowledge. They allow reasoning about individuals and concepts, i.e. set of individuals with common properties. Typically, DLs are limited to dealing with crisp, well defined concepts. That is, concepts for which the problem whether an individual is an instance of it is yes/no question. More often than not, the concepts encountered in the real world do not have a precisely defined criteria of membership: we may say that an individual is an instance of a concept only to a certain degree, depending on the individual's properties. The DLs that deal with such fuzzy concepts are called fuzzy DLs. In order to deal with fuzzy, incomplete, indeterminate and inconsistent concepts, we need to extend the fuzzy DLs, combining the neutrosophic logic with a classical DL. In particular, concepts become neutrosophic (here neutrosophic means fuzzy, incomplete, indeterminate, and inconsistent), thus reasoning about neutrosophic concepts is supported. We'll define its syntax, its semantics, and describe its properties.Comment: 18 pages. Presented at the IEEE International Conference on Granular Computing, Georgia State University, Atlanta, USA, May 200

    Loop Formulas for Description Logic Programs

    Full text link
    Description Logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful formalism for the integration of answer set programming with description logics, for the Semantic Web. In this paper, we generalize the notions of completion and loop formulas of logic programs to description logic programs and show that the answer sets of a dl-program can be precisely captured by the models of its completion and loop formulas. Furthermore, we propose a new, alternative semantics for dl-programs, called the {\em canonical answer set semantics}, which is defined by the models of completion that satisfy what are called canonical loop formulas. A desirable property of canonical answer sets is that they are free of circular justifications. Some properties of canonical answer sets are also explored.Comment: 29 pages, 1 figures (in pdf), a short version appeared in ICLP'1

    Unification in the Description Logic EL

    Full text link
    The Description Logic EL has recently drawn considerable attention since, on the one hand, important inference problems such as the subsumption problem are polynomial. On the other hand, EL is used to define large biomedical ontologies. Unification in Description Logics has been proposed as a novel inference service that can, for example, be used to detect redundancies in ontologies. The main result of this paper is that unification in EL is decidable. More precisely, EL-unification is NP-complete, and thus has the same complexity as EL-matching. We also show that, w.r.t. the unification type, EL is less well-behaved: it is of type zero, which in particular implies that there are unification problems that have no finite complete set of unifiers.Comment: 31page
    • …
    corecore