45,210 research outputs found

    General description of electromagnetic radiation processes based on instantaneous charge acceleration in `endpoints'

    Get PDF
    We present a new methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation --- the `endpoint formulation' --- combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or `endpoints', with each such event being treated as a source of emission. This method implicitly allows for particle creation/destruction, and is suited to direct numerical implementation in either the time- or frequency-domains. In this paper, we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the Earth's atmosphere and the Moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan Effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent `bremsstrahlung' from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.Comment: accepted by Phys. Rev. E, new title, some corrections in equations and references, figure styles updated to match journal policie

    An Investigation of Stochastic Cooling in the Framework of Control Theory

    Full text link
    This report provides a description of unbunched beam stochastic cooling in the framework of control theory. The main interest in the investigation is concentrated on the beam stability in an active cooling system. A stochastic cooling system must be considered as a closed-loop, similar to the feedback systems used to damp collective instabilities. These systems, which are able to act upon themselves, are potentially unstable. The self-consistent solution for the beam motion is derived by means of a mode analysis of the collective beam motion. This solution yields a criterion for the stability of each collective mode. The expressions also allow for overlapping frequency bands in the beam spectrum and thus are valid over the entire frequency range. Having established the boundaries of stability in this way, the Fokker-Planck equation is used to describe the cooling process. This description does not include collective effects and thus a stable beam must be assumed. Hence the predictions about the cooling process following from the Fokker-Planck equation only make physical sense within the boundaries of beam stability. Finally it is verified that the parameters of the cooling system which give the best cooling results are compatible with the stability of the beam.Comment: 64 pages, latex, 11 eps-figures appended as uuencoded file, german hyphenation corrected I

    Minimization of phonon-tunneling dissipation in mechanical resonators

    Get PDF
    Micro- and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavors. Their performance is in many cases limited by the deleterious effects of mechanical damping. Here, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the "phonon-tunneling" approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform the first rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunneling solver represents a major step towards accurate prediction of the mechanical quality factor.Comment: 12 pages, 4 figure

    The operational processing of wind estimates from cloud motions: Past, present and future

    Get PDF
    Current NESS winds operations provide approximately 1800 high quality wind estimates per day to about twenty domestic and foreign users. This marked improvement in NESS winds operations was the result of computer techniques development which began in 1969 to streamline and improve operational procedures. In addition, the launch of the SMS-1 satellite in 1974, the first in the second generation of geostationary spacecraft, provided an improved source of visible and infrared scanner data for the extraction of wind estimates. Currently, operational winds processing at NESS is accomplished by the automated and manual analyses of infrared data from two geostationary spacecraft. This system uses data from SMS-2 and GOES-1 to produce wind estimates valid for 00Z, 12Z and 18Z synoptic times

    The analysis of fluorophore orientation by multiphoton fluorescence microscopy

    Get PDF
    The accessibility of tunable, ultrafast laser sources has spurred the development and wide application of specialized microscopy techniques based on chromophore fluorescence following two- and three-photon absorption. The attendant advantages of such methods, which have led to a host of important applications including three-dimensional biological imaging, include some features that have as yet received relatively little attention. In the investigation of cellular or subcellular processes, it is possible to discern not only on the location, concentration, and lifetime of molecular species, but also the orientations of key fluorophores. Detailed information can be secured on the degree of orientational order in specific cellular domains, or the lifetimes associated with the rotational motions of individual fluorophores; both are accessible from polarization-resolved measurements. This paper reports the equations that are required for any such investigation, determined by robust quantum electrodynamical derivation. The general analysis, addressing a system of chromophores oriented in three dimensions, determines the fluorescence signal produced by the nonlinear polarizations that are induced by multiphoton absorption, allowing for any rotational relaxation. The results indicate that multiphoton imaging can be further developed as a diagnostic tool, either to selectively discriminate micro-domains in vivo, or to monitor dynamical changes in intracellular fluorophore orientation

    Self-consistent theory of large amplitude collective motion: Applications to approximate quantization of non-separable systems and to nuclear physics

    Get PDF
    The goal of the present account is to review our efforts to obtain and apply a ``collective'' Hamiltonian for a few, approximately decoupled, adiabatic degrees of freedom, starting from a Hamiltonian system with more or many more degrees of freedom. The approach is based on an analysis of the classical limit of quantum-mechanical problems. Initially, we study the classical problem within the framework of Hamiltonian dynamics and derive a fully self-consistent theory of large amplitude collective motion with small velocities. We derive a measure for the quality of decoupling of the collective degree of freedom. We show for several simple examples, where the classical limit is obvious, that when decoupling is good, a quantization of the collective Hamiltonian leads to accurate descriptions of the low energy properties of the systems studied. In nuclear physics problems we construct the classical Hamiltonian by means of time-dependent mean-field theory, and we transcribe our formalism to this case. We report studies of a model for monopole vibrations, of 28^{28}Si with a realistic interaction, several qualitative models of heavier nuclei, and preliminary results for a more realistic approach to heavy nuclei. Other topics included are a nuclear Born-Oppenheimer approximation for an {\em ab initio} quantum theory and a theory of the transfer of energy between collective and non-collective degrees of freedom when the decoupling is not exact. The explicit account is based on the work of the authors, but a thorough survey of other work is included.Comment: 203 pages, many figure

    Nonlinear optical techniques for improved data capture in fluorescence microscopy and imaging

    Get PDF
    Multiphoton fluorescence microscopy is now a well-established technique, currently attracting much interest across all fields of biophysics - especially with regard to enhanced focal resolution. The fundamental mechanism behind the technique, identified and understood through the application of quantum theory, reveals new optical polarization features that can be exploited to increase the information content of images from biological samples. In another development, based on a newly discovered, fundamentally related mechanism, it emerges the passage of off-resonant probe laser pulses may characteristically modify the intensity of single-photon fluorescence, and its associated optical polarization behavior. Here, the probe essentially confers optical nonlinearity on the decay transition, affording a means of optical control over the fluorescent emission. Compared to a catalogue of other laser-based techniques widely used in the life sciences, most suffer limitations reflecting the exploitation of specifically lifetime-associated features; the new optical control mechanism promises to be more generally applicable for the determination of kinetic data. Again, there is a prospect of improving spatial resolution, non-intrusively. It is anticipated that tight directionality can be imposed on single-photon fluorescence emission, expediting the development of new imaging applications. In addition, varying the optical frequency of the probe beam can add another dimension to the experimental parameter space. This affords a means of differentiating between molecular species with strongly overlapping fluorescence spectra, on the basis of their differential nonlinear optical properties. Such techniques significantly extend the scope and the precision of spatial and temporal information accessible from fluorescence studies
    • …
    corecore