102 research outputs found

    Deterministic Factorization of Sparse Polynomials with Bounded Individual Degree

    Full text link
    In this paper we study the problem of deterministic factorization of sparse polynomials. We show that if fF[x1,x2,,xn]f \in \mathbb{F}[x_{1},x_{2},\ldots ,x_{n}] is a polynomial with ss monomials, with individual degrees of its variables bounded by dd, then ff can be deterministically factored in time spoly(d)logns^{\mathrm{poly}(d) \log n}. Prior to our work, the only efficient factoring algorithms known for this class of polynomials were randomized, and other than for the cases of d=1d=1 and d=2d=2, only exponential time deterministic factoring algorithms were known. A crucial ingredient in our proof is a quasi-polynomial sparsity bound for factors of sparse polynomials of bounded individual degree. In particular we show if ff is an ss-sparse polynomial in nn variables, with individual degrees of its variables bounded by dd, then the sparsity of each factor of ff is bounded by sO(d2logn)s^{O({d^2\log{n}})}. This is the first nontrivial bound on factor sparsity for d>2d>2. Our sparsity bound uses techniques from convex geometry, such as the theory of Newton polytopes and an approximate version of the classical Carath\'eodory's Theorem. Our work addresses and partially answers a question of von zur Gathen and Kaltofen (JCSS 1985) who asked whether a quasi-polynomial bound holds for the sparsity of factors of sparse polynomials

    A Matrix Hyperbolic Cosine Algorithm and Applications

    Full text link
    In this paper, we generalize Spencer's hyperbolic cosine algorithm to the matrix-valued setting. We apply the proposed algorithm to several problems by analyzing its computational efficiency under two special cases of matrices; one in which the matrices have a group structure and an other in which they have rank-one. As an application of the former case, we present a deterministic algorithm that, given the multiplication table of a finite group of size nn, it constructs an expanding Cayley graph of logarithmic degree in near-optimal O(n^2 log^3 n) time. For the latter case, we present a fast deterministic algorithm for spectral sparsification of positive semi-definite matrices, which implies an improved deterministic algorithm for spectral graph sparsification of dense graphs. In addition, we give an elementary connection between spectral sparsification of positive semi-definite matrices and element-wise matrix sparsification. As a consequence, we obtain improved element-wise sparsification algorithms for diagonally dominant-like matrices.Comment: 16 pages, simplified proof and corrected acknowledging of prior work in (current) Section

    Evaluating Stability in Massive Social Networks: Efficient Streaming Algorithms for Structural Balance

    Full text link
    Structural balance theory studies stability in networks. Given a nn-vertex complete graph G=(V,E)G=(V,E) whose edges are labeled positive or negative, the graph is considered \emph{balanced} if every triangle either consists of three positive edges (three mutual ``friends''), or one positive edge and two negative edges (two ``friends'' with a common ``enemy''). From a computational perspective, structural balance turns out to be a special case of correlation clustering with the number of clusters at most two. The two main algorithmic problems of interest are: (i)(i) detecting whether a given graph is balanced, or (ii)(ii) finding a partition that approximates the \emph{frustration index}, i.e., the minimum number of edge flips that turn the graph balanced. We study these problems in the streaming model where edges are given one by one and focus on \emph{memory efficiency}. We provide randomized single-pass algorithms for: (i)(i) determining whether an input graph is balanced with O(logn)O(\log{n}) memory, and (ii)(ii) finding a partition that induces a (1+ε)(1 + \varepsilon)-approximation to the frustration index with O(npolylog(n))O(n \cdot \text{polylog}(n)) memory. We further provide several new lower bounds, complementing different aspects of our algorithms such as the need for randomization or approximation. To obtain our main results, we develop a method using pseudorandom generators (PRGs) to sample edges between independently-chosen \emph{vertices} in graph streaming. Furthermore, our algorithm that approximates the frustration index improves the running time of the state-of-the-art correlation clustering with two clusters (Giotis-Guruswami algorithm [SODA 2006]) from nO(1/ε2)n^{O(1/\varepsilon^2)} to O(n2log3n/ε2+nlogn(1/ε)O(1/ε4))O(n^2\log^3{n}/\varepsilon^2 + n\log n \cdot (1/\varepsilon)^{O(1/\varepsilon^4)}) time for (1+ε)(1+\varepsilon)-approximation. These results may be of independent interest
    corecore