65,128 research outputs found

    Fast Multi-frame Stereo Scene Flow with Motion Segmentation

    Full text link
    We propose a new multi-frame method for efficiently computing scene flow (dense depth and optical flow) and camera ego-motion for a dynamic scene observed from a moving stereo camera rig. Our technique also segments out moving objects from the rigid scene. In our method, we first estimate the disparity map and the 6-DOF camera motion using stereo matching and visual odometry. We then identify regions inconsistent with the estimated camera motion and compute per-pixel optical flow only at these regions. This flow proposal is fused with the camera motion-based flow proposal using fusion moves to obtain the final optical flow and motion segmentation. This unified framework benefits all four tasks - stereo, optical flow, visual odometry and motion segmentation leading to overall higher accuracy and efficiency. Our method is currently ranked third on the KITTI 2015 scene flow benchmark. Furthermore, our CPU implementation runs in 2-3 seconds per frame which is 1-3 orders of magnitude faster than the top six methods. We also report a thorough evaluation on challenging Sintel sequences with fast camera and object motion, where our method consistently outperforms OSF [Menze and Geiger, 2015], which is currently ranked second on the KITTI benchmark.Comment: 15 pages. To appear at IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017). Our results were submitted to KITTI 2015 Stereo Scene Flow Benchmark in November 201

    Self-motion perception from expanding and contracting optical flows overlapped with binocular disparity

    Get PDF
    AbstractExpanding and contracting patterns were presented on different disparity planes to investigate the role of stereo depth in vection. Experiment 1 tested the effect of stereo depth on inducing vection with expanding and contracting flows on different disparity planes. Subjects reported whether they felt forward or backward self-motion. The results clearly showed the dominance of the background flow in determining one’s self-motion direction. Experiment 2 tested the effect of stereo depth on a vection direction using two expanding flows. The center of each expansion was displaced to either horizontal side. The subjects judged in which direction they were going when they felt vection. The results demonstrated that the subjects felt their heading biased toward the direction of the center of the farther expansion while feeling vection. The heading perception from the expanding flow was determined only by the background flow, not by 2-D integration of the retinal motion. The result demonstrates the importance of background flow produced by stereo depth in determining one’s self-motion from an expanding/contracting motion

    Simultaneous Stereo Video Deblurring and Scene Flow Estimation

    Full text link
    Videos for outdoor scene often show unpleasant blur effects due to the large relative motion between the camera and the dynamic objects and large depth variations. Existing works typically focus monocular video deblurring. In this paper, we propose a novel approach to deblurring from stereo videos. In particular, we exploit the piece-wise planar assumption about the scene and leverage the scene flow information to deblur the image. Unlike the existing approach [31] which used a pre-computed scene flow, we propose a single framework to jointly estimate the scene flow and deblur the image, where the motion cues from scene flow estimation and blur information could reinforce each other, and produce superior results than the conventional scene flow estimation or stereo deblurring methods. We evaluate our method extensively on two available datasets and achieve significant improvement in flow estimation and removing the blur effect over the state-of-the-art methods.Comment: Accepted to IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 201
    • …
    corecore