94,474 research outputs found

    Collaboration Helps Camera Overtake LiDAR in 3D Detection

    Full text link
    Camera-only 3D detection provides an economical solution with a simple configuration for localizing objects in 3D space compared to LiDAR-based detection systems. However, a major challenge lies in precise depth estimation due to the lack of direct 3D measurements in the input. Many previous methods attempt to improve depth estimation through network designs, e.g., deformable layers and larger receptive fields. This work proposes an orthogonal direction, improving the camera-only 3D detection by introducing multi-agent collaborations. Our proposed collaborative camera-only 3D detection (CoCa3D) enables agents to share complementary information with each other through communication. Meanwhile, we optimize communication efficiency by selecting the most informative cues. The shared messages from multiple viewpoints disambiguate the single-agent estimated depth and complement the occluded and long-range regions in the single-agent view. We evaluate CoCa3D in one real-world dataset and two new simulation datasets. Results show that CoCa3D improves previous SOTA performances by 44.21% on DAIR-V2X, 30.60% on OPV2V+, 12.59% on CoPerception-UAVs+ for AP@70. Our preliminary results show a potential that with sufficient collaboration, the camera might overtake LiDAR in some practical scenarios. We released the dataset and code at https://siheng-chen.github.io/dataset/CoPerception+ and https://github.com/MediaBrain-SJTU/CoCa3D.Comment: Accepted by CVPR2

    Enabling monocular depth perception at the very edge

    Get PDF
    Depth estimation is crucial in several computer vision applications, and a recent trend aims at inferring such a cue from a single camera through computationally demanding CNNs - precluding their practical deployment in several application contexts characterized by low-power constraints. Purposely, we develop a tiny network tailored to microcontrollers, processing low-resolution images to obtain a coarse depth map of the observed scene. Our solution enables depth perception with minimal power requirements (a few hundreds of mW), accurately enough to pave the way to several high-level applications at-the-edge

    Preliminary Survey of Multiview Synthesis Technology

    Get PDF
    [[abstract]]With the maturity of digital camera technology, it is feasible to form an array of cameras. The major usage of a camera array is to acquire different views of a scene in one shot. The captured data can be used to analyze the depths of the objects. Once we have the 3D model, we can synthesize virtual views, relight the scene, etc. The potential applications are virtual reality and augmented reality. In order to investigate the multiview technology, we studied the fundamental concepts, including the single lens camera, the eccentric lens camera, the plenoptic camera, and the multiview camera. We also discussed a few application examples for understanding the practical usages. The study showed that the initial depth estimation technology becomes important nowadays in providing photo realistic natural feel to people. The application areas were also extended to entertainment, and also to some crucial tasks such as medical operations and combat missions.[[conferencetype]]國際[[conferencedate]]20101015~20101017[[conferencelocation]]Darmstadt, German

    Practical Auto-Calibration for Spatial Scene-Understanding from Crowdsourced Dashcamera Videos

    Full text link
    Spatial scene-understanding, including dense depth and ego-motion estimation, is an important problem in computer vision for autonomous vehicles and advanced driver assistance systems. Thus, it is beneficial to design perception modules that can utilize crowdsourced videos collected from arbitrary vehicular onboard or dashboard cameras. However, the intrinsic parameters corresponding to such cameras are often unknown or change over time. Typical manual calibration approaches require objects such as a chessboard or additional scene-specific information. On the other hand, automatic camera calibration does not have such requirements. Yet, the automatic calibration of dashboard cameras is challenging as forward and planar navigation results in critical motion sequences with reconstruction ambiguities. Structure reconstruction of complete visual-sequences that may contain tens of thousands of images is also computationally untenable. Here, we propose a system for practical monocular onboard camera auto-calibration from crowdsourced videos. We show the effectiveness of our proposed system on the KITTI raw, Oxford RobotCar, and the crowdsourced D2^2-City datasets in varying conditions. Finally, we demonstrate its application for accurate monocular dense depth and ego-motion estimation on uncalibrated videos.Comment: Accepted at 16th International Conference on Computer Vision Theory and Applications (VISAP, 2021

    Self-Supervised Deep Visual Odometry with Online Adaptation

    Full text link
    Self-supervised VO methods have shown great success in jointly estimating camera pose and depth from videos. However, like most data-driven methods, existing VO networks suffer from a notable decrease in performance when confronted with scenes different from the training data, which makes them unsuitable for practical applications. In this paper, we propose an online meta-learning algorithm to enable VO networks to continuously adapt to new environments in a self-supervised manner. The proposed method utilizes convolutional long short-term memory (convLSTM) to aggregate rich spatial-temporal information in the past. The network is able to memorize and learn from its past experience for better estimation and fast adaptation to the current frame. When running VO in the open world, in order to deal with the changing environment, we propose an online feature alignment method by aligning feature distributions at different time. Our VO network is able to seamlessly adapt to different environments. Extensive experiments on unseen outdoor scenes, virtual to real world and outdoor to indoor environments demonstrate that our method consistently outperforms state-of-the-art self-supervised VO baselines considerably.Comment: Accepted by CVPR 2020 ora
    • …
    corecore