45 research outputs found

    Depth estimation of metallic objects using multiwavelets scale-space representation

    Full text link
    The problem of dimensional defects in aluminum die-castings is widespread throughout the foundry industry and their detection is of paramount importance in maintaining product quality. Due to the unpredictable factory environment and metallic with highly reflective nature, it is extremely hard to estimate true dimensionality of these metallic parts, autonomously. Some existing vision systems are capable of estimating depth to high accuracy, however are very much hardware dependent, involving the use of light and laser pattern projectors, integrated into vision systems or laser scanners. However, due to the reflective nature of these metallic parts and variable factory environments, the aforementioned vision systems tend to exhibit unpromising performance. Moreover, hardware dependency makes these systems cumbersome and costly. In this work, we propose a novel robust 3D reconstruction algorithm capable of reconstructing dimensionally accurate 3D depth models of the aluminum die-castings. The developed system is very simple and cost effective as it consists of only a pair of stereo cameras and a defused fluorescent light. The proposed vision system is capable of estimating surface depths within the accuracy of 0.5mm. In addition, the system is invariant to illuminative variations as well as orientation and location of the objects on the input image space, making the developed system highly robust. Due to its hardware simplicity and robustness, it can be implemented in different factory environments without a significant change in the setup. The proposed system is a major part of quality inspection system for the automotive manufacturing industry. <br /

    Stereo correspondence estimation using multiwavelets scale-space representation-based multiresolution analysis

    Full text link
    A multiresolution technique based on multiwavelets scale-space representation for stereo correspondence estimation is presented. The technique uses the well-known coarse-to-fine strategy, involving the calculation of stereo correspondences at the coarsest resolution level with consequent refinement up to the finest level. Vector coefficients of the multiwavelets transform modulus are used as corresponding features, where modulus maxima defines the shift invariant high-level features (multiscale edges) with phase pointing to the normal of the feature surface. The technique addresses the estimation of optimal corresponding points and the corresponding 2D disparity maps. Illuminative variation that can exist between the perspective views of the same scene is controlled using scale normalization at each decomposition level by dividing the details space coefficients with approximation space. The problems of ambiguity, explicitly, and occlusion, implicitly, are addressed by using a geometric topological refinement procedure. Geometric refinement is based on a symbolic tagging procedure introduced to keep only the most consistent matches in consideration. Symbolic tagging is performed based on probability of occurrence and multiple thresholds. The whole procedure is constrained by the uniqueness and continuity of the corresponding stereo features. The comparative performance of the proposed algorithm with eight famous existing algorithms, presented in the literature, is shown to validate the claims of promising performance of the proposed algorithm. <br /

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    A High-Precision Calibration Method for Stereo Vision System

    Get PDF

    Driver Distraction Identification with an Ensemble of Convolutional Neural Networks

    Get PDF
    The World Health Organization (WHO) reported 1.25 million deaths yearly due to road traffic accidents worldwide and the number has been continuously increasing over the last few years. Nearly fifth of these accidents are caused by distracted drivers. Existing work of distracted driver detection is concerned with a small set of distractions (mostly, cell phone usage). Unreliable ad-hoc methods are often used.In this paper, we present the first publicly available dataset for driver distraction identification with more distraction postures than existing alternatives. In addition, we propose a reliable deep learning-based solution that achieves a 90% accuracy. The system consists of a genetically-weighted ensemble of convolutional neural networks, we show that a weighted ensemble of classifiers using a genetic algorithm yields in a better classification confidence. We also study the effect of different visual elements in distraction detection by means of face and hand localizations, and skin segmentation. Finally, we present a thinned version of our ensemble that could achieve 84.64% classification accuracy and operate in a real-time environment.Comment: arXiv admin note: substantial text overlap with arXiv:1706.0949

    Three Dimensional Measurement Using Fisheye Stereo Vision

    Get PDF
    corecore