29 research outputs found

    Dynamic Knowledge Distillation with A Single Stream Structure for RGB-D Salient Object Detection

    Full text link
    RGB-D salient object detection(SOD) demonstrates its superiority on detecting in complex environments due to the additional depth information introduced in the data. Inevitably, an independent stream is introduced to extract features from depth images, leading to extra computation and parameters. This methodology which sacrifices the model size to improve the detection accuracy may impede the practical application of SOD problems. To tackle this dilemma, we propose a dynamic distillation method along with a lightweight framework, which significantly reduces the parameters. This method considers the factors of both teacher and student performance within the training stage and dynamically assigns the distillation weight instead of applying a fixed weight on the student model. Extensive experiments are conducted on five public datasets to demonstrate that our method can achieve competitive performance compared to 10 prior methods through a 78.2MB lightweight structure

    Hierarchical Cross-modal Transformer for RGB-D Salient Object Detection

    Full text link
    Most of existing RGB-D salient object detection (SOD) methods follow the CNN-based paradigm, which is unable to model long-range dependencies across space and modalities due to the natural locality of CNNs. Here we propose the Hierarchical Cross-modal Transformer (HCT), a new multi-modal transformer, to tackle this problem. Unlike previous multi-modal transformers that directly connecting all patches from two modalities, we explore the cross-modal complementarity hierarchically to respect the modality gap and spatial discrepancy in unaligned regions. Specifically, we propose to use intra-modal self-attention to explore complementary global contexts, and measure spatial-aligned inter-modal attention locally to capture cross-modal correlations. In addition, we present a Feature Pyramid module for Transformer (FPT) to boost informative cross-scale integration as well as a consistency-complementarity module to disentangle the multi-modal integration path and improve the fusion adaptivity. Comprehensive experiments on a large variety of public datasets verify the efficacy of our designs and the consistent improvement over state-of-the-art models.Comment: 10 pages, 10 figure

    Bifurcated backbone strategy for RGB-D salient object detection

    Full text link
    Multi-level feature fusion is a fundamental topic in computer vision. It has been exploited to detect, segment and classify objects at various scales. When multi-level features meet multi-modal cues, the optimal feature aggregation and multi-modal learning strategy become a hot potato. In this paper, we leverage the inherent multi-modal and multi-level nature of RGB-D salient object detection to devise a novel cascaded refinement network. In particular, first, we propose to regroup the multi-level features into teacher and student features using a bifurcated backbone strategy (BBS). Second, we introduce a depth-enhanced module (DEM) to excavate informative depth cues from the channel and spatial views. Then, RGB and depth modalities are fused in a complementary way. Our architecture, named Bifurcated Backbone Strategy Network (BBS-Net), is simple, efficient, and backbone-independent. Extensive experiments show that BBS-Net significantly outperforms eighteen SOTA models on eight challenging datasets under five evaluation measures, demonstrating the superiority of our approach (∼4%\sim 4 \% improvement in S-measure vs.vs. the top-ranked model: DMRA-iccv2019). In addition, we provide a comprehensive analysis on the generalization ability of different RGB-D datasets and provide a powerful training set for future research.Comment: A preliminary version of this work has been accepted in ECCV 202
    corecore